計算神經科學

計算神經科學,亦稱理論神經科學數學神經科學,是神經科學的分支,為一門跨領域學科,包含神經科學、認知科學、資訊工程、電腦科學、物理學數學等。主要特點是透過數學模型與理論分析,將人抽象化,嘗試理解神經系統調控神經的原則,像是神經系統發展構造生理認知功能[1][2][3][4]

理論上,計算神經科學是理論神經科學的子領域,該領域旨在用電腦程式模擬的方式來驗證與解決數學模型。 但由於大多數的數學模型若建立在符合生物學的情況下,會變得過於複雜,無法進行分析。因此這兩個術語被視為同義詞,可交換使用[5],數學神經科學亦可用來強調該領域的定量性質。[6]

計算神經科學與聯結主義机器学习人工神经网络人工智慧計算學習理論等不符合生物學的模型無關,其模型對神經元神經系統的描述,著重於在生理學與動力學上是符合生物學的。[7][8][9][10][11]

理論神經科學的模型旨在獲取生物系統在多個時間及空間尺度上重要功能,像是膜電流、通過神经振荡的化學耦合,和記憶、學習與行為等。這些假設的計算模型可以通過生物學或心理學實驗上的直接檢驗。

歷史

計算神經科學一詞首次出現於1985年,由史瓦茲加州卡莫市主辦的會議中提出。其後出現的類似名詞包含神经模型、脑理论及神经网络。後來相關的解釋定義皆收錄於麻省理工學院出版(1990)之《計算神經科學》(Computational Neuroscience )一書內。

有關此領域的研究最早可追溯自艾倫·勞埃德·霍奇金安德魯·赫胥黎大衛·休伯爾托斯坦·威澤爾,以及大衛·馬爾等人。以及艾倫·勞埃德·霍奇金與安德魯·赫胥黎發明电压钳技术,首次成功的將動作電位數值化。大衛·休伯爾及托斯坦·威澤爾則發現主要視覺皮質區(primary visual cortex),此區負責處理由虹膜傳來的第一手訊息,將接收區與彙整區做出整理(大衛·休伯爾與托斯坦·威澤爾, 1962)。

主要議題

計算神經科學的研究可以大致分為幾類。多數計算神經科學家與實驗人員密切合作,分析最新資料與合成生物現象的新模型。

單神經元建模

即使只有單一個神經元亦具有複雜的生物物理特徵且可進行運算[12]霍克金赫胥黎的原始霍克金-赫胥黎模型僅僅使用兩個壓敏電流(電位敏感離子通道是一種醣蛋白分子,存在於所有細胞的細胞膜上,延伸穿過細胞膜的雙層脂膜,允許離子等在特定情況下穿過該通道):速效鈉離子與內向整流鉀離子。儘管其成功地預測動作電位的時間與定性特徵,但其模型無法預測如適應與分流。現今科學家認為壓敏電流在不同動力學上的調節與靈敏度,是計算神經科學的重要議題。[13]

複雜樹突的計算功能亦深入研究中,其他還有很多探討不同電流是如何與神經元交互作用的文獻。[14]

參見

参考资料

  1. Trappenberg, Thomas P. . Oxford: Oxford University Press https://www.worldcat.org/oclc/48835124. 2002. ISBN 0-19-851582-0. OCLC 48835124. 缺少或|title=为空 (帮助)
  2. . web.archive.org. 2011-06-04 [2020-07-03].
  3. Press, The MIT. . mitpress.mit.edu. [2020-07-03]. (原始内容存档于2018-05-31) (英语).
  4. Gerstner, Wulfram,; Naud, Richard,; Paninski, Liam,. . Cambridge https://www.worldcat.org/oclc/885338083. ISBN 978-1-107-44761-5. OCLC 885338083. 缺少或|title=为空 (帮助)
  5. Trappenberg, Thomas P. . Second edition. Oxford https://www.worldcat.org/oclc/869736152. ISBN 978-0-19-102944-8. OCLC 869736152. 缺少或|title=为空 (帮助)
  6. . Journal of physiology - Paris : an international review journal for the neurosciences entirely in English. 1992. ISSN 0928-4257 (英语).
  7. Bortin, M. M.; Rose, W. C.; Truitt, R. L.; Rimm, A. A.; Saltzstein, E. C.; Rodey, G. E. . Journal of the National Cancer Institute. 1975-11, 55 (5): 1227–1229. ISSN 0027-8874. PMID 1546. doi:10.1093/jnci/55.5.1227.
  8. . www.encephalos.gr. [2020-07-03].
  9. Zorzi, Marco; Testolin, Alberto; Stoianov, Ivilin P. . Frontiers in Psychology. 2013-08-20, 4. ISSN 1664-1078. PMC 3747356. PMID 23970869. doi:10.3389/fpsyg.2013.00515.
  10. Di Paolo, Ezequiel A. (PDF). Dynamical systems approach to embodiment and sociality. 2003: 19-42.
  11. Pfeifer, R.; Fogelman-Soulié, F.; Steels, L. . Oxford: Elsevier Science https://www.worldcat.org/oclc/843201769. 1989. ISBN 978-0-444-59876-9. OCLC 843201769. 缺少或|title=为空 (帮助)
  12. Forrest, Michael D. . Frontiers in Computational Neuroscience. 2014, 8: 86. ISSN 1662-5188. PMC 4138505. PMID 25191262. doi:10.3389/fncom.2014.00086.
  13. Johnston, Daniel, 1947-. . Cambridge, Mass.: MIT Press https://www.worldcat.org/oclc/29702508. 1995. ISBN 0-262-10053-3. OCLC 29702508. 缺少或|title=为空 (帮助)
  14. Koch, Christof, 1956-. . New York: Oxford University Press https://www.worldcat.org/oclc/778073952. 1999. ISBN 978-0-19-976055-8. OCLC 778073952. 缺少或|title=为空 (帮助)

參考文獻

  • Chklovskii DB. . Neuron. 2004, 43 (5): 609–17. PMID 15339643. doi:10.1016/j.neuron.2004.08.012.
  • Sejnowski, Terrence J.; Churchland, Patricia Smith. . Cambridge, Mass: MIT Press. 1992. ISBN 0-262-03188-4.
  • Abbott, L. F.; Dayan, Peter. . Cambridge, Mass: MIT Press. 2001. ISBN 0-262-04199-5.
  • Hodgkin AL, Huxley AF. . J Physiol. (Lond.). 28 August 1952, 117 (4): 500–44. PMC 1392413. PMID 12991237.
  • William Bialek; Rieke, Fred; David Warland; Rob de Ruyter van Steveninck. . Cambridge, Mass: MIT. 1999. ISBN 0-262-68108-0.
  • Schutter, Erik de. . Boca Raton: CRC. 2001. ISBN 0-8493-2068-2.
  • Sejnowski, Terrence J.; Hemmen, J. L. van. . Oxford [Oxfordshire]: Oxford University Press. 2006. ISBN 0-19-514822-3.
  • Michael A. Arbib, Shun-ichi Amari, Prudence H. Arbib. . Cambridge, Massachusetts: The MIT Press. 2002. ISBN 0-262-01197-2.

外部連結

相關期刊

相關軟體

  • Brian, a simulator for spiking neural networks.
  • Emergent, neural simulation software.
  • Genesis, a general neural simulation system.
  • HHsim, a neuronal membrane simulator.
  • HNeT, Holographic Neural Technology.
  • MCell, A Monte Carlo Simulator of Cellular Microphysiology.
  • ModelDB, a large open-access database of program codes of published computational neuroscience models.
  • NEST, a simulation tool for large neuronal systems.
  • Neuroconstruct, software for developing biologically realistic 3D neural networks.
  • Neurofitter, a parameter tuning package for electrophysiological neuron models.
  • Neurojet, a neural network simulator specialized for the hippocampus.
  • NEURON, a neuron simulator also useful to simulate neural networks.
  • Neurospaces, an efficient neural simulation system that uses software engineering principles from the industry.
  • Neuroscience related Python tools
  • PyDSTool, a simulator and dynamical systems analysis tool with biophysical neuron and network model specification/construction and data analysis toolboxes.
  • SNNAP, a single neuron and neural network simulator tool.

國際會議

相關網站


This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.