CpG位点

CpG位点英語:,或称为CG位点)是指DNA的某个区域,其上的碱基序列以胞嘧啶接着鸟嘌呤出现。“CpG”是“—C—磷酸—G—”的缩写 ,指磷酸二酯键连接了胞嘧啶和鸟嘌呤,其中C位于5'端而G位于3'端。

在CpG位点中的胞嘧啶可以被甲基化5-甲基胞嘧啶。在哺乳动物中,基因内CpG位点的甲基化会改变此基因的表达,对这一表达调控的研究是表观遗传学的重要组成部分。涉及添加甲基基团的称为DNA甲基转移酶

在哺乳动物中,70%到80%的CpG位点的胞嘧啶是甲基化的。[1]

未甲基化的CpG位点可以被免疫系统的浆细胞样树突状细胞单核细胞NK细胞B细胞上的TLR9(Toll样受体9)识别[2],来检测体内的微生物感染。

不要混淆CpG位点(左)和C:G配对(右)

在脊椎动物基因组中的出现频率

CpG位点的胞嘧啶被甲基化再脱氨变成胸腺嘧啶的过程

一个被发现已久的现象:相对于正常的随机概率期望,CpG位点在脊椎动物基因组中出现的概率非常低。以人类基因组为例(GC含量约为42%),CpG位点的出现概率应为0.21*0.21 = 4.41%;而人类基因组中CpG的实际含量约为1% -- 这尚未达到随机概率的四分之一。根据E Scarano等的论文[3],这一现象发生的原因是脊椎动物基因组中CpG的胞嘧啶被甲基化为5-甲基胞嘧啶后再发生脫氨作用变成胸腺嘧啶,从而形成了从C到T的突变,致使CpG位点的出现概率降低。这种现象被称为CG抑制(CG suppression)。

CpG岛

CpG岛是一个富含CpG位点的区域,但客观精确描述所谓“富含”的定义尚不明确。通常对于CpG岛的正式定义为:一个长度至少为200bp的片段,其GC含量高于50%,且“观察期望比”(observed-to-expexted)高于60%。

注:观察期望比:即CpG位点的观察值(片段实际含有的CpG位点数目)和“期待值”的比值。“期待值”通常有两种算法:(C*G)/LS[4]或((C+G)/2)^2/LS[5]。其中,C、G代表胞嘧啶和鸟嘌呤的数目;LS代表片段长度(length of sequence)。

很多哺乳动物基因组中的CpG岛和基因的起始位点相联系[6]。因此,CpG岛的存在对于基因的预测和解释具有帮助作用。

在哺乳动物基因组中,CpG岛的序列长度通常为300-3000bp,在约40%的基因的啟動子附近都有发现[7]。在人基因组中则有约70%的基因啟動子有高CpG含量。如前文提及,CpG位点的实际存在率比随机概率的结果要低得多[5]

2002年的某研究阐述了CpG岛的预测规则,使用这种规则可以排除一些高GC含量的基因组序列,如Alu重复序列。基于对人21和22号染色体的完全测序研究成果,长度大于500bp、GC含量高于55%、CpG位点“观察期望比”高于65%的DNA序列更有可能是“真正的”CpG岛[8]

CpG岛以至少达到60%的理论CpG位点含量(可达到4-6%)为特征,而基因组中平均CpG含量只有约1%(CG抑制)。和在基因编码区中的CpG位点不同,在基因正常表达时,位于基因启动子区中的CpG位点往往不会被甲基化;这种现象表明启动子序列中的CpG位点的甲基化很可能导致基因表达被抑制。DNA甲基化和组蛋白修饰是基因铭印的核心过程[9]。大多数组织间或正常样本和癌症样本间的甲基化差异发生在CpG岛附近(CpG island shores)而非CpG岛内部[10]

一种CpG岛形成的假说图解:通过未被甲基化,从而在漫长的进化史上保留下来

在脊椎动物中,CpG岛往往位于基因转录起始位点附近,尤其是持家基因。CpG位点有被甲基化的倾向,借助这种甲基化可以分辨新合成的DNA链和母链,这在DNA序列复制后的最终校对环节起重要作用。甲基化的胞嘧啶容易脱氨转变成胸腺嘧啶,导致T/G错误配对。胸腺嘧啶DNA糖苷酶(TDG)是人类用于修复TG错配的酶。但由于CpG位点的稀少性,TDG在理论上没有足够高的效率来消除这些快速发生的突变。通常认为CpG岛存在的原因是因受如下选择压力导致的:需要相对更高的CpG含量、更低的甲基化水平或是调控基因需要。最近也有研究称大多数的CpG岛是由非选择压力形成的[11]

甲基化、基因沉默、癌症与老化

对位于基因启动子内部CpG位点的甲基化可能导致该基因沉默,这种现象在部分人类肿瘤中表现为抑癌基因的沉默。与之对应的,CpG位点的去甲基化则和某些肿瘤的原癌基因过表达相关[12]

基于衰老和上万个CpG位点的甲基化重要联系,学者已能根据DNA的甲基化情况对人类和黑猩猩的细胞组织寿命进行精确的预测[13]

参见

  • TLR9,一种用于探测未甲基化CpG序列的受体
  • 生物钟

参考文献

  1. Jabbari K, Bernardi G. . Gene. May 2004, 333: 143–9 [2016-09-16]. PMID 15177689. doi:10.1016/j.gene.2004.02.043. (原始内容存档于2018-06-20).
  2. Ramirez-Ortiz ZG, Specht CA, Wang JP, Lee CK, Bartholomeu DC, Gazzinelli RT, Levitz SM. . Infect Immun. 2008, 76 (5): 2123–2129. PMC 2346696. PMID 18332208. doi:10.1128/IAI.00047-08.
  3. Scarano E, Iaccarino M, Grippo P, Parisi E. . Proc. Natl. Acad. Sci. USA. 1967, 57 (5): 1394–400. PMC 224485. PMID 5231746. doi:10.1073/pnas.57.5.1394.
  4. Gardiner-Garden, M.; Frommer, M. . Journal of Molecular Biology. 1987-07-20, 196 (2): 261–282 [2016-09-16]. doi:10.1016/0022-2836(87)90689-9. (原始内容存档于2015-09-24).
  5. Saxonov, Serge; Berg, Paul; Brutlag, Douglas L. . Proceedings of the National Academy of Sciences of the United States of America. 2006-01-31, 103 (5): 1412–1417. ISSN 0027-8424. PMC 1345710. PMID 16432200. doi:10.1073/pnas.0510310103.
  6. . Neuro-Oncology. 2005-04-01, 7 (2): 204–205. ISSN 1522-8517. PMC 1871880. doi:10.1215/S1152851704200059.
  7. Fatemi, Mehrnaz; Pao, Martha M.; Jeong, Shinwu; Gal-Yam, Einav Nili; Egger, Gerda; Weisenberger, Daniel J.; Jones, Peter A. . Nucleic Acids Research. 2005-01-01, 33 (20): e176. ISSN 0305-1048. PMC 1292996. PMID 16314307. doi:10.1093/nar/gni180.
  8. Takai, Daiya; Jones, Peter A. . Proceedings of the National Academy of Sciences. 2002-03-19, 99 (6): 3740–3745 [2016-09-16]. ISSN 0027-8424. PMC 122594. PMID 11891299. doi:10.1073/pnas.052410099. (原始内容存档于2016-05-13) (英语).
  9. Feil, Robert; Berger, Frédéric. . Trends in genetics: TIG. 2007-04-01, 23 (4): 192–199 [2016-09-16]. ISSN 0168-9525. PMID 17316885. doi:10.1016/j.tig.2007.02.004. (原始内容存档于2016-04-06).
  10. Irizarry, Rafael A.; Ladd-Acosta, Christine; Wen, Bo; Wu, Zhijin; Montano, Carolina; Onyango, Patrick; Cui, Hengmi; Gabo, Kevin; Rongione, Michael. . Nature genetics. 2009-02-01, 41 (2): 178–186. ISSN 1061-4036. PMC 2729128. PMID 19151715. doi:10.1038/ng.298.
  11. Cohen, Netta Mendelson; Kenigsberg, Ephraim; Tanay, Amos. . Cell. 2011-05-27, 145 (5): 773–786 [2016-09-16]. ISSN 1097-4172. PMID 21620139. doi:10.1016/j.cell.2011.04.024. (原始内容存档于2014-10-27).
  12. pubmeddev. . [2016-09-16]. (原始内容存档于2019-02-15).
  13. Horvath, Steve. . Genome Biology. 2013-01-01, 14 (10): R115 [2016-09-16]. ISSN 1474-760X. PMC 4015143. PMID 24138928. doi:10.1186/gb-2013-14-10-r115. (原始内容存档于2017-02-20).
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.