中微子退耦

中微子退耦大爆炸宇宙学中指中微子不再与重子物质相互作用,发生退耦之后,也不再影响宇宙早期动力学 [1]。在退耦之前,中微子与质子中子电子达到热平衡,中微子与这些粒子之间有弱相互作用。退耦大约发生在弱相互作用减弱的速率慢于宇宙膨胀的速率的时刻,或者发生在弱相互作用的时间尺度比当时的宇宙年龄更大的时刻。中微子退耦大约发生在大爆炸发生之后1秒,宇宙温度大约为100亿开尔文,即1兆电子伏特[2]

退耦温度

中微子与电子和正电子的相互作用抑制了中微子自由流,反应为

.

这一反应的速率近似由电子和正电子的数密度决定,即反应的截面和粒子速度的积的平均值。相对论性的电子和正电子的数密度与温度成3次方关系,即。温度(能量)低于时 W/Z波色子质量(~100 GeV)时,弱相互作用的截面和速度的乘积近似为,其中费米常数(按粒子物理里的标准做法,因子光速 定位1)。整理以上两个关系,得弱相互作用减弱速率

.

宇宙膨胀速率由哈伯常数 表示,

,

其中,万有引力常数为宇宙的能量密度。此刻宇宙的能量密度主要由辐射能组成,即。由以上两式可得,随着宇宙的冷却, 弱相互作用减弱速率比宇宙膨胀速率减小的更快。当两个速率大约相等时(不计数量级为1的项,包括等效简并度,即相互作用粒子的态的数目),可得中微子退耦时的近似温度满足

[3]

尽管这是一个非常粗糙的推导,但给出了中微子退耦的主要物理现象。

观测证据

尽管中微子退耦无法直接观测,但这一现象会遗留下宇宙中微子背景辐射,如同大爆炸会遗留下宇宙微波背景。探测中微子背景辐射远超出现有的中微子探测器的精度范围[4]。有数据间接显示中微子背景辐射是存在的。证据之一是宇宙微波背景的角功率谱的衰减,这可能是中微子背景的各向异性造成的[5]

中微子退耦与质子与中子之比密切相关,这也提供一个非直接观测中微子退耦的可能方法。退耦之前,中子与质子的数目通过弱相互作用保持其平衡丰度之比,即通过β衰变

及其逆反应电子俘获

一旦弱相互作用减弱的速率低于宇宙膨胀的特征速率,这一平衡将无法维持,中子与质子豐度比固定为

.[6]

此值可由退耦时刻中子和质子的玻尔兹曼因子算得,即由

算得,其中为中子和质子的质量差,为退耦时的温度[3]。这一比值对太初核合成期间原子的合成至关重要,因为这一比值是决定原子产量的决定性因素。宇宙中大部分氦原子在太初核合成期间形成。[7]。因为氦原子非常稳定,中子被锁定其中,不再发生β衰变。因子中子的丰度一直保持到今天。天文学家可测得中子的丰度。氦的丰度是由中微子退耦时的中子与质子的数量比决定,因此可间接推知中微子退耦发生的温度,结果与以上推导相符[8]

参见

脚注

  1. Longair (2006), p. 290
  2. Longair (2006), p. 291
  3. Bernstein (1989), p. 27.
  4. Longair (2006), p. 302.
  5. Trotta (2005), p. 1.
  6. Longair (2006), p. 291–292.
  7. Grupen (2005), p. 218.
  8. Longair (2006), p. 293.

参考文献

外部链接

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.