割圆术 (赵友钦)

赵友钦割圆术是元代数学家赵友钦在所著的《革象新书》卷五《乾象周髀》篇研究的割圆术。与刘徽从内接正六角形开始不同,赵氏割圆术从分割内接正方形开始[1]

赵友钦割圆术
赵友钦《革象新书》卷五《乾象周髀》篇割圆术书影

如图,圆的半径为r; 内接正方形的边长为 ,由圆心到正方形一边倒垂直距离为 d

d 的延长线与圆周相交点将圆周等分为正八边形。

令正八边形的边长为

为分割圆成正16边形之边长,赵友钦正确地推断的迭代关系:


推而广之:

令 r=1;


……

圆周率

赵友钦指出,分割越细,正多边形的边数愈多,正多边形越接近圆周。

角数愈多而为方者不复方渐变为圆矣。故自一二次求之至十二次精密已极

他最后将千寸直径的圆周分割为正16384边形,从而获得

三尺一寸四分一厘五毫九丝二忽然有奇

正多边形圆周率近似值
43.121445
83.136548
163.140331
323.141277
643.141513
1283.141572
2563.141587
5123.141591
10243.141592
20483.141592
163843.141592+

密率

南朝祖冲之发现密率:

但这个密率比在以后数百年间,无人问津,直到赵友钦重新提及这个密率分数[2]

赵友钦在获得

後,他将 3141.592 乘以 113

以一百一十三乘之果得三百五十五尺,此为其法所以极精密也

即:

参见

刘徽割圆术

参考文献

  1. 李俨 《中国数学史》 第六章《宋元数学》 144-145页 商务印书馆 1998 ISBN 978-7-100-01474-3
  2. Yoshio Mikami The Development of Mathematics in China and Japan p135-136
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.