存在量化
基础
要表达“某些自然数自乘得25”这个命题,一种方式是:
- ,或,或,或,以此类推。
因为使用了“或”一词,这看上去是逻辑析取。然而形式逻辑中的析取概念却不能表达出“以此类推”一词的含义,因此该命题并不能在形式逻辑中解读。
因此将该命题改述为
- 存在自然数,。
也可表达为
- 对于某些自然数,。
这便是一个使用存在量化的单一命题。该命题比原命题更精确,因为“以此类推”一词想表示的是要包括所有的自然数、且除此之外不包括任何其它内容,但语言中并没有明确地陈述这点,这便是“以此类推”一词不能被形式地解释的根本原因。
这个新命题为真,因为5是自然数,而当把5代入时,可以得到。尽管大多数自然数都不满足,但存在至少一个解足以举证存在命题为真。反之,“存在偶数,”为假,因为一个偶数解也不存在。
然而,“存在奇数,”为真,因为5是奇数。这演示了论域的重要性——确定变量n的取值范围。限制存在量化的论域要使用逻辑合取。例如“存在奇数,”逻辑等价于“存在自然数,是奇数且”。这里的“且”构造出了逻辑合取。
在符号逻辑中,使用存在量词“∃”(反写的无衬线体的字母"E")来表示存在量化。所以如果是谓词“”,而则是自然数集,那么有
表示的是真命题“存在自然数,”。
类似的,如果是谓词“是偶数”,那么有
表示的是假命题“存在自然数,是偶数且”。
引用
- Hinman, P. . A K Peters. 2005. ISBN 978-1-56881-262-5.
参见
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.