歐拉恆等式

其中自然對數的底虛數單位,圓周率

开始,以相对速度i,走π长时间,加1,则到达原点。

歐拉恆等式是指下列的關係式

這條恆等式第一次出現於1748年瑞士數學、物理學家萊昂哈德·歐拉洛桑出版的書《无穷小分析引论》。這是複分析歐拉公式的特殊情況。

美國物理學家理查德·費曼稱這恆等式為「數學最奇妙的公式」,因為它把5個最基本的數學常數簡潔地連繫起來。

證明

歐拉公式
(代入
(因

與歐拉恆等式有關的文學作品

博士熱愛的算式》,小川洋子著,臺灣版本由王蘊潔翻譯,二版,麥田出版社,2008年,ISBN 978-986-173-408-8。

参见

參考文獻

  1. Conway, John H., and Guy, Richard K. (1996), The Book of Numbers, Springer ISBN 978-0-387-97993-9
  2. Crease, Robert P. (10 May 2004), "The greatest equations ever", Physics World [registration required]
  3. Dunham, William (1999), Euler: The Master of Us All, Mathematical Association of America ISBN 978-0-88385-328-3
  4. Euler, Leonhard (1922), Leonhardi Euleri opera omnia. 1, Opera mathematica. Volumen VIII, Leonhardi Euleri introductio in analysin infinitorum. Tomus primus, Leipzig: B. G. Teubneri
  5. Kasner, E., and Newman, J. (1940), Mathematics and the Imagination, Simon & Schuster
  6. Maor, Eli (1998), e: The Story of a number, Princeton University Press ISBN 0-691-05854-7
  7. Nahin, Paul J. (2006), Dr. Euler's Fabulous Formula: Cures Many Mathematical Ills, Princeton University Press ISBN 978-0-691-11822-2
  8. Paulos, John Allen (1992), Beyond Numeracy: An Uncommon Dictionary of Mathematics, Penguin Books ISBN 0-14-014574-5
  9. Reid, Constance (various editions), From Zero to Infinity, Mathematical Association of America
  10. Sandifer, C. Edward (2007), Euler's Greatest Hits, Mathematical Association of America ISBN 978-0-88385-563-8
  11. Stipp, David, , Basic Books, 2017
  12. Wells, David (1990), "Are these the most beautiful?", The Mathematical Intelligencer, 12: 37–41, doi:10.1007/BF03024015
  13. Wilson, Robin, , Oxford University Press, 2018
  14. Zeki, S.; Romaya, J. P.; Benincasa, D. M. T.; Atiyah, M. F., , Frontiers in Human Neuroscience, 2014, 8, doi:10.3389/fnhum.2014.00068
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.