歐拉恆等式
歐拉恆等式是指下列的關係式:
這條恆等式第一次出現於1748年瑞士數學、物理學家萊昂哈德·歐拉在洛桑出版的書《无穷小分析引论》。這是複分析的歐拉公式的特殊情況。
美國物理學家理查德·費曼稱這恆等式為「數學最奇妙的公式」,因為它把5個最基本的數學常數簡潔地連繫起來。
證明
- (歐拉公式)
- (代入)
- (因和)
参见
參考文獻
- Conway, John H., and Guy, Richard K. (1996), The Book of Numbers, Springer ISBN 978-0-387-97993-9
- Crease, Robert P. (10 May 2004), "The greatest equations ever", Physics World [registration required]
- Dunham, William (1999), Euler: The Master of Us All, Mathematical Association of America ISBN 978-0-88385-328-3
- Euler, Leonhard (1922), Leonhardi Euleri opera omnia. 1, Opera mathematica. Volumen VIII, Leonhardi Euleri introductio in analysin infinitorum. Tomus primus, Leipzig: B. G. Teubneri
- Kasner, E., and Newman, J. (1940), Mathematics and the Imagination, Simon & Schuster
- Maor, Eli (1998), e: The Story of a number, Princeton University Press ISBN 0-691-05854-7
- Nahin, Paul J. (2006), Dr. Euler's Fabulous Formula: Cures Many Mathematical Ills, Princeton University Press ISBN 978-0-691-11822-2
- Paulos, John Allen (1992), Beyond Numeracy: An Uncommon Dictionary of Mathematics, Penguin Books ISBN 0-14-014574-5
- Reid, Constance (various editions), From Zero to Infinity, Mathematical Association of America
- Sandifer, C. Edward (2007), Euler's Greatest Hits, Mathematical Association of America ISBN 978-0-88385-563-8
- Stipp, David, , Basic Books, 2017
- Wells, David (1990), "Are these the most beautiful?", The Mathematical Intelligencer, 12: 37–41, doi:10.1007/BF03024015
- Wilson, Robin, , Oxford University Press, 2018
- Zeki, S.; Romaya, J. P.; Benincasa, D. M. T.; Atiyah, M. F., , Frontiers in Human Neuroscience, 2014, 8, doi:10.3389/fnhum.2014.00068
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.