膠球
在粒子物理学中,胶球是一种假想中的复合粒子,它仅仅由胶子组成,而不包含任何价夸克。胶子的这种特殊的束缚态是可能的,因为胶子带有色荷,因此能够通过强核力相互作用。因为胶球总是与其它普通的介子束缚态一同产生,所以其很难在粒子加速器中被探测到。
理论研究表明通过现有的对撞机技术,人们完全有能力达到胶球能够被产生的能量水平。但是,由于上述的探测困难,直至2012年,胶球依然没有被观测到并确定地认证。
格点计算模拟结果
格点场论提供了一种从第一原则理论上研究胶球的能谱的方法。莫宁斯塔和皮尔登在1999年成功计算了QCD中的几种最轻的,没有动力学夸克的胶球。其中3中最轻的胶球如下表所示。动力学夸克的存在会轻微影响下表中的数据,但同时也会是计算更加困难。之后的QCD(格点和求和法则)计算发现最轻的胶球的质量的数量级应该在1000–1700 MeV范围之内。
J P'C | 质量 |
---|---|
0++ | 1730 ±80 MeV |
2++ | 2400 ±120 MeV |
0−+ | 2590 ±130 MeV |
候选粒子实验
粒子加速器实验通常能够识别的不稳定的复合粒子的精度约为10 MeV/c^2,但是并不能够精确的确定粒子的性质。在一些实验中有一些可能的粒子被检测到,但它们在一些研究中被认为是可疑的。尽管证据是不明确的,但一些候选的粒子共振态,可能是胶球。
矢量,伪矢量或张量胶球的候选粒子:
- X(3020)由BaBar国际协作观察到一个激发态的 2-+, 1+- or 1-- ,一个质量约 3.02 GeV/c^2的胶球。[1]
标量胶球的候选粒子:
- f0(500) 也被称为σ -- 这个粒子的性质与1000 MeV或1500 MeV的胶球可能是一致的。[2]
- f0(980) -- 这种复合粒子的结构与光胶球的一致。[2]
- f0(1370) -- 这个共振态存在是有争议的,是一个胶球介子混合态的候选粒子。[2]
- f0(1500) -- 这种共振态的存在是无可争议,但是作为一个胶球介子态或纯胶球是不成熟的。[2]
- f0(1710) -- 这种共振态的存在是无可争议,但是作为一个胶球介子态或纯胶球是不成熟的。[2]
其它胶球的候选粒子:
在LEP实验的胶子喷柱表明胶球存在的理论预期超过40%。[2]许多候选粒子已经至少经过十八年的积极研究。[3]gluex实验计划开始于2014,是专门设计用来更明确产生胶球的实验证据。[4]
参考及更多内容
- Y.K. Hsiao, C.Q. Geng, "Identifying Glueball at 3.02 GeV in Baryonic B Decays" (Version 2: October 9, 2013) http://arxiv.org/abs/1302.3331
- Wolfgang Ochs. . Journal of Physics G. 2013, 40 (4): 043001. Bibcode:2013JPhG...40d3001O. arXiv:1301.5183. doi:10.1088/0954-3899/40/4/043001.
- Walter Taki, "Search for Glueballs" (1996) http://www.slac.stanford.edu/cgi-wrap/getdoc/ssi96-006.pdf
- .
- Frank Close and Phillip R. Page, "Glueballs", Scientific American, vol. 279 no. 5 (November 1998) pp. 80–85
- Vincent Mathieu; Nikolai Kochelev; Vicente Vento. . International Journal of Modern Physics E. 2009, 18: 1–49. Bibcode:2009IJMPE..18....1M. arXiv:0810.4453. doi:10.1142/S0218301309012124.
- Glueball on arxiv.org
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.