色散 (光學)

光學中,色散是指一道光中,光的相速度隨著頻率而改變。[1]擁有上述特性的介質,我們稱為色散性介質。提到色散,通常是指電磁波(包含可見光)的性質,但此性質可以推廣至任何波動,例如聲波與地震波的色散、波浪的色散、或是遠距傳遞時傳輸線模型光纖的色散。

在一個色散的三稜鏡中,物質的色散效應使得不同顏色的光的折射角度不同,白光被分開。

在光學中,一個重要且常見的的色散現象為透過三稜鏡或是帶有色差的透鏡產生的光谱,不同顏色的光有著不同的折射[2]。在一些遠距傳輸的應用中,我們可以不考慮波的絕對相位,而只考慮波包的傳遞,在此情況下我們必須計算波包的色散,也就是頻率與不同群速度的波包的關係。

例子

彩虹可能是最常見的色散現象,其是由於色散造成白光在空間上分成不同波長(不同顏色)的部分。除此之外,色散亦發生在其他情況中,例如群速度色散造成波包在光纖中隨著傳輸距離而消散。

歷史

西元1666年,由牛頓所發現:太陽光(或日光燈等白色光)通過三棱鏡折射後,會被折射分散成紅、橙、黃、綠、藍、靛、紫等七種主要顏色的彩色光 → 稱為光的色散,分散的可見光帶稱為可見光譜。

自然光通過三棱镜后,因光的色散造成不同顏色(实质上是不同频率)的光折射到不同的方向,形成可见光谱

材料色散及波導色散

大部分情況下,色差色散指的是材料色散,也就是材料的折射率隨著頻率而改變。在波導管中,有另一種色散稱為波導色散,其中產生色散的原因是因為幾何結構。廣義來說,"波導"色散可以發生於波經過任何不均勻的結構,而不論波是否侷限在特定空間中傳遞。在波導管裡,兩種色散會同時出現。在光纖中,此兩種色散剛好互相抵銷,因而可以傳遞特定波長的波,對於快速光纖通訊助益高。

光學中的材料色散

不同玻璃,真空折射率與波長的關係。可見光範圍以灰色區域表示。

在光學上,材料色散有優點也有缺點。透過三稜鏡,光的色散為製作光谱仪以及分光輻射計的基礎。有時候也會透過全像光柵,來達成更顯著的分光效果。然而,在透鏡中的色散效應造成影像品質低落,在顯微鏡、望遠鏡及其他成像技術上可見一斑。

在均勻介質中,波傳遞的相速度

c 為真空中的光速,而n為介質的折射率。

对于不同波长的光,介质折射率n(λ)也不同。這個關係式通常由阿贝数可以計算出,或是由柯西等式Sellmeier等式的係數求得。

克拉莫-克若尼關係式,波長與實部折射率的關係與材料的吸收率有關,此吸收率由折射率的虛部(或稱消光係數)。在非磁性物質中,克拉莫-克若尼關係式的χ電極化率χe = n2  1.

对于可见光,一般的透明物质:

如果

那麼

或可用以下表达式表示:

在此狀況下,此介質擁有正常頻散。然而,當折射率隨著波長增加而增加時(通常在紫外光區發現[3]),則介質被稱為擁有反常頻散

法国数学家柯西发现折射率和光波长的关系,可以用一个级数表示:

其中B, C, D是三个柯西色散係数,由物质的种类决定。只需测定三个不同波长的光的折射率n(λ),代入柯西色散公式中,便可得到三个联立方程式。解这组联立方程式就可以得到这种物质的三个柯西色散系数。有了三个柯西色散系数,就可以计算出其他波长的光的折射率,而不需要再进行测量。

除了柯西色散公式之外,还有其他的色散公式,如:Hartmann色散公式、Conrady色散公式、Hetzberger色散公式等。

群速度色散

在一种假想介质(k=ω^2)中传播的短时脉冲的时间演化。这体现了长波成分比短波成分传播要更快(正群速度色散),产生啁啾和脉冲变宽。

色散的效应远不止是使得相速度随着波长变化,更重要的是它产生一种叫做群速度色散的效应。相速度v被定义为v = c/n,然而这仅仅定义了一种频率的速度。当含有不同频率成分的波叠加在一起,比如一个信号或者脉冲,我们更关心群速度。群速度描述了一个脉冲或者信号中的信息随着波动传播的速度。在旁边的动图中,我们可以发现波动本身(橙色)以相速度移动,这个速度要比波包(黑色)代表的群速度更快。举个例子,这个脉冲可能是一个通讯信号,其内的信息只能以群速度传播,尽管它由速度更快的波前组成。

从折射率曲线n(ω)我们可以算出群速度。或者用一种更直接的计算方式。首先我们计算波数k = ωn/c,其中ω=2πf是角频率。这样,相速度的公式是vp=ω/k,而群速度的计算公式可以用导数vg=dω/dk表示。或者,群速度也可以用相速度vp表示,

当存在色散的时候,群速度不但不等于相速度,它还会随着波长变化。这种现象被称作群速度色散(Group Velocity Dispersion, GVD),也导致一个脉冲会变宽,这是因为脉冲里含有多个频率的成分,它们的速度不同。群速度色散可以用群速度的倒数对角频率的导数d2k/dω2来定量描述。

如果一个光脉冲在介质中的传播具有正群速度色散,那么短波成分的群速度就小于长波成分的群速度,这个脉冲就是啁啾(up-chirped),它的频率随着时间升高。 反之,如果一个光脉冲在介质中的传播具有负群速度色散,那么短波成分的群速度就大于长波成分的群速度,这个脉冲就是啁啾(down-chirped),它的频率随着时间降低。

群速度色散参数

经常被用来定量描述群速度色散。D和群速度色散的比值是一个负的系数:

一些书的作者把折射率对波长的二阶导数大于0/小于0,也即D小于0/大于0,称为正常色散/反常色散。[4]这个定义和群速度色散有关,不可以和前一节相混淆。一般来说这两者没有必然联系,读者必须从上下文推断含义。

寬頻中的高階色散


寶石學


顯影


中子星輻射


簡易的色散演示實驗(其一)

在日光下使用一桶水和一片鏡子就可以觀察光的色散現象了。为了便于观察现象,实验中光路需要較大的出射角来增大色散角度。此演示實驗中鏡子起到調整日光出射水面角度的作用。

参考文献

  1. 1882-1970., Born, Max,. . 7th expanded ed. Cambridge: Cambridge University Press https://www.worldcat.org/oclc/40200160. 1999. ISBN 0521642221. OCLC 40200160. 缺少或|title=为空 (帮助)
  2. Dispersion Compensation 页面存档备份,存于 Retrieved 25-08-2015.
  3. Born, M. and Wolf, E. (1980) "Principles of Optics, 6th ed." pg. 93. Pergamon Press.
  4. Saleh, B.E.A. and Teich, M.C. Fundamentals of Photonics (2nd Edition) Wiley, 2007.

参见

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.