钙钛矿 (结构)

钙钛矿是具有通式ABX3结构的一类化合物,其名称源自于同名矿物钙钛矿(CaTiO3)。除了CaTiO3外,还有BiFeO3、CsPbI3也具有这一结构。

CH3NH3PbX3(X=I, Br, Cl中的一种或多种)钙钛矿的结构。甲基铵阳离子(CH3NH3+)被PbX6八面体包围。[1]

其中A位通常为阳离子所占据,B位为铅离子Pb2+或亚锡离子Sn2+,而X位为卤素阴离子。 若A位由两种阳离子混合,或X位由两种卤素阴离子占据时,则特称为混合型钙钛矿。[2]钙钛矿ABX3中的A组分也可以被有机阳离子替代,如有机钙钛矿CH3NH3PbBr3等。[3]

判断

金施密特的容忍因子(Goldschmidt tolerance factor,以 t 表示)以A、B、X位的离子半径来判断任意三种(或多种)元素,或元素之间的任意比例是否能形成稳定的钙钛矿结构,并且预测晶型。若要预测混合型钙钛矿的结构,则要以有效容忍因子(teffective)来估算,同时因为A位或X位不只一种离子,则要加权离子比例来计算“估计有效离子半径”(reffective ):

r1 是第一种阳(陰)离子的半径r2是第二种阳(陰)离子的半径x是第一种与第二种阳(陰)离子的比例


以三碘合铅酸甲脒-铯(CsxFA1−xPbI3)为例,调整铯离子比例(x)来改变估计有效阳离子半径,进而产生不同的 teffective 值。
当 teffective < 0.8 时,判断为 δ 相的正交钙钛矿结构。
当 0.8 < teffective < 1 时,判断为立方钙钛矿结构。
当 teffective > 1 时,判断为六方晶体且非钙钛矿结构。

有效容忍因子介于 0.94−0.98 时,能使许多钙钛矿型太阳能电池具有较高的性能。反之,当有效容忍因子小于 0.85 的混合型钙钛矿电池将有不良的光活性,而且容易形成非钙钛矿结构。[4]

用途

钙钛矿材料可被用于光伏器件[5][6](转换效率高达15%[6][7])、激光材料[8]、发光二极管[9]等应用中。

其中三碘合铅酸甲基铵(MAPbI3)的钙钛矿型太阳能电池的转换效率(PCE)比三碘合铅酸甲脒(FAPbI3)的更高。虽然甲脒的离子半径比甲基銨小,而且吸收光的频率范围较广,但是其填充因子(FF)数值值较低,因为纯三碘合铅酸甲脒在室温下的相稳定性低。 在高温形成的α相三碘合铅酸甲脒,是具有光活性的钙钛矿结构,但若在室温久放,会逐渐相变为δ相三碘合铅酸甲脒,其并无光活性而且非钙钛矿结构,不能产生光生伏打效应。 为了三碘合铅酸甲脒的相稳定性,可以掺入甲基銨,形成更稳定的三碘合铅酸甲脒-甲基铵(MAxFA1−xPbI3)结构。同时,三碘合铅酸甲脒-甲基铵的光致发光光谱寿命(photoluminescenc lifetime)比纯三碘合铅酸甲基铵或纯三碘合铅酸甲脒的还长,也代表其性能更高。这是因为甲基銨、CH3PH3+、CH3SH2+、與SH3 + 等阳离子具有较大的偶极矩,所以和 PbI6八面体之间有较强的作用力,並能稳定钙钛矿结构。 而离子(Cs+)虽然无偶极矩,却仍然能稳定α相三碘合铅酸甲脒。相同道理,相較於純三碘合铅酸甲基铵,三碘合铅酸甲基铵-铯(CsxMA1−xPbI3)太陽能電池的热稳定性與轉換效率比較高。[10]

二元的三碘合铅酸(铯/甲脒)系统

由于纯三碘合铅酸铯(CsPbI3)的 α到 δ相变温度比纯三碘合铅酸甲脒高,所以在室温下,具有光活性的α相三碘合铅酸铯的结构稳定度低,导致其转换效率比三碘合铅酸甲脒低。 混合少许的铯到三碘合铅酸甲脒中可以降低相变温度,因而产生较高的转换效率。但三碘合铅酸甲脒-铯(CsxFA1−xPbI3)型太阳能电池,只有在铯含量低时(x=0.1~0.2),其转换效率及性能才高于三碘合铅酸甲脒。封装的三碘合铅酸甲脒-铯太阳能电池在连续白光照射下呈现长期稳定性,未封装的也能在低相对湿度的环境下长久储存。当铯含量增加时,粒径缩小,造成甲脒离子和碘的作用力增强,同时半峰全宽更为扩展,并且能隙增加,最终造成转换效率下降。融合高 t 值的三碘合铅酸甲脒与低 t 值的三碘合铅酸铯,可控制三碘合铅酸甲脒-铯的有效容忍因子(teffective)在 0.8 到 1.0 之间,其为最能稳定结构的 t 值范围。[11]

二元的三碘合铅酸(铷/甲脒)系统

纯三碘合铅酸铷(RbPbI3)只有δ相,并非钙钛矿结构。 但是,因为铷离子的半径较小,因此将铷掺入到三碘合铅酸甲脒中,形成三碘合铅酸甲脒-铷(RbxFA1−xPbI3),可以提高转换效率以及稳定性。然而,铷的含量只能为少量(x ≤ 0.05),否则将造成相间隔离(phase segregation)。同时研究表明,三碘合铅酸甲脒-铷 α 到 δ 相变所需的能量和相变时间,都比纯三碘合铅酸甲脒还要少。除了温度以外,高湿度也会使钙钛矿结构发生 α 到 δ 相变。 但是,掺入铷可以稳固在高湿度下的结构,也能增加长期的稳定性。透过测定自由能或是相对稳定能(relative stabilization energy, ΔEstabilization),可以解释为何掺入某些阳离子能够形成更稳定的钙钛矿结构。实验发现当掺入某些比例的铯离子时,使得自由能小于零,此时显示为较稳定的组态。藉由计算相对稳定能,也发现铯、铷离子在热力学上比甲脒离子更能形成稳定的钙钛矿结构。[12]

二元的 (氯/碘)合铅酸甲基铵与(氯/碘)合铅酸甲脒系统

相较于氯-碘合铅酸甲脒(FAPb(I/Cl)),氯-碘合铅酸甲基铵(MAPb(I/Cl))有更多相关的研究,因为其载子扩散长度较长。 合成氯-碘合铅酸甲基铵需要以碘化铅(PbI2)与碘甲胺(MAI)作为前驱物,并将两者溶解在二甲基甲酰胺(DMF)。 而使用 first deposition approach 或一步法中,所需的碘化铅与碘甲胺的比例各有不同。 虽然氯离子掺入碘合铅酸甲基铵形成氯-碘合铅酸甲基铵被证实能提高性能,但是许多研究却指出,仪器检测不到氯的存在。[13]

参考文献

  1. Eames, Christopher; Frost, Jarvist M.; Barnes, Piers R. F.; o'Regan, Brian C.; Walsh, Aron; Islam, M. Saiful. . Nature Communications. 2015, 6: 7497. Bibcode:2015NatCo...6E7497E. PMC 4491179. PMID 26105623. doi:10.1038/ncomms8497.
  2. .
  3. Thomas Rath, Gregor Trimmel, Sebastian F. Hoefler. . Monatshefte für Chemie - Chemical Monthly. 2017-05-01, 148 (5): 795–826 [2018-12-22]. ISSN 1434-4475. doi:10.1007/s00706-017-1933-9 (英语).
  4. .
  5. Bullis, Kevin. . MIT Technology Review. 8 August 2013 [8 August 2013].
  6. Li, Hangqian. . Solar Energy. 2016, 126: 243–251. Bibcode:2016SoEn..126..243L. doi:10.1016/j.solener.2015.12.045.
  7. Cartwright, Jon. . Science. 11 September 2013.
  8. Dereń, P. J.; Bednarkiewicz, A.; Goldner, Ph.; Guillot-Noël, O. . Journal of Applied Physics. 2008, 103 (4): 043102–043102–8. Bibcode:2008JAP...103d3102D. doi:10.1063/1.2842399.
  9. Stranks, Samuel D.; Snaith, Henry J. . Nature Nanotechnology. 2015-05-01, 10 (5): 391–402. Bibcode:2015NatNa..10..391S. ISSN 1748-3387. PMID 25947963. doi:10.1038/nnano.2015.90 (英语).
  10. .
  11. .
  12. .
  13. .

扩展阅读

  • Tejuca, Luis G. . New York: Dekker. 1993: 382. ISBN 978-0-8247-8786-8.
  • Mitchell, Roger H. . Thunder Bay, Ontario: Almaz Press. 2002: 318. ISBN 978-0-9689411-0-2.

外部链接

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.