2的自然对数

ln2A002162)约为:

使用对数公式

可以求出log2,它约为:(A007524

log210约为:

*A020862)。
nln nOEIS
20.693147180559945309417232121458A002162
31.09861228866810969139524523692A002391
41.38629436111989061883446424292A016627
51.60943791243410037460075933323A016628
61.79175946922805500081247735838A016629
71.94591014905531330510535274344A016630
82.07944154167983592825169636437A016631
92.19722457733621938279049047384A016632
102.30258509299404568401799145468A002392

公式

欧拉-马歇罗尼常数黎曼ζ函數

贝利-波尔温-普劳夫公式
(基於反雙曲函數,可參見計算自然對數的級數。)

积分公式

欧拉-马歇罗尼常数

其他公式

用皮尔斯展开式(A091846)表达ln2:

.

恩格尔展开式A059180表达ln2:

.

用余切展开式A081785表达ln2:

.

其他對數

參考文獻

  • Brent, Richard P. . J. ACM. 1976, 23 (2): 242–251. doi:10.1145/321941.321944. MR0395314.
  • Uhler, Horace S. . Proc. Nat. Acac. Sci. U. S. A. 1940, 26: 205–212. MR0001523.
  • Sweeney, Dura W. . Mathematics of Computation. 1963, 17. MR0160308.
  • Chamberland, Marc. (PDF). Journal of Integer Sequences. 2003, 6: 03.3.7 [2011-01-08]. MR2046407. (原始内容 (PDF)存档于2011-06-06).
  • Gourévitch, Boris; Guillera Goyanes, Jesus. (PDF). Applied Math. E-Notes. 2007, 7: 237–246 [2011-01-08]. MR2346048. (原始内容存档 (PDF)于2020-02-06).
  • Wu, Qiang. . Mathematics of Computation. 2003, 72 (242): 901–911. doi:10.1090/S0025-5718-02-01442-4.

外部連結

  • Gourdon, Xavier; Sebah, Pascal. . [2011-01-08]. (原始内容存档于2020-02-23).

參見

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.