希爾伯特第七問題

希爾伯特第七問題希爾伯特的23個問題之一,此問題涉及無理數超越數

命題敘述

給定以下兩個等價[1]敘述:

  1. 等腰三角形中,若底角和頂角的比值為無理數的代数数,則底邊和側邊長度的比值是否恆為超越數?
  2. 是无理数、是非的代数数,那么(例如=)是否恆為超越数?

問題的解決

第二個問題已于1934年由蘇聯數學家阿勒克山德·格爾豐德證明,德國數學家西奧多·施奈德也在1935年獨立證明此問題,他們證明的結果即為格尔丰德-施奈德定理。( 是無理數的條件是必要的,否則令 為一代數數)

在第二個問題成立後,也意味著第一個問題成立。

此問題的推廣為貝克定理艾倫·貝克憑藉此一成果獲得1970年的菲爾茲獎

參照

參考文獻

  1. Feldman; Nesterenko. . Parshin, A. N. (编). . Springer-Verlag Berlin Heidelberg. 1998: 146–147. ISBN 978-3-540-61467-8.

外部連結

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.