耳蜗

耳蜗(拉丁文,德文,英文:Cochlea)是内耳的一个解剖结构,它和前庭迷路一起组成内耳骨迷路。耳蜗的名称来源于其形状与蜗牛壳的相似性,耳蜗的英文名Cochlea,即是拉丁语中“蜗牛壳”的意思。耳蜗是外周听觉系统的组成部分。其核心部分为柯蒂氏器(拉丁文:Organon spirale.英文:Organ of Corti或spiral organ,德文:Corti-Organ),是听觉传导器官,负责将来自中耳的声音信号转换为相应的神经电信号,交送脑的中枢听觉系统接受进一步处理,最终实现听觉知觉。耳蜗的病变和多种听觉障碍密切相关。

內耳
後半規管
上半規管
橢圓囊
外半規管
側半規管
球狀囊
內耳構造

耳蜗的解剖位置

如右图所示。耳蜗位于颞骨(拉丁文:Ossa temporalia,德文:Schläfenbein,英文:Temporal bone,)深处,毗邻中耳听骨链脑干,和是内耳骨迷路的组成部分。耳蜗的几何对称轴,称为耳蜗轴(Modiolus)大致处在水平面内,与颞骨表面垂直。前庭耳蜗神经与听觉相关的一部分:耳蜗神经,起源自耳蜗。

耳蜗的解剖结构

人类耳蜗的截面

人类的耳蜗形似蜗牛壳,由底端(拉丁文、德文、英文:Basal)至顶端(拉丁文,英文:Apical,德文:Apikal)螺旋环绕二又八分之五周,展开长度约为35 mm。

耳蜗是一个骨质结构。如右图耳蜗由三个内部充满淋巴液的空腔组成。这三个空腔由上到下依次为:

  • 前庭阶/前庭管(Scala vestibuli),内含外淋巴(Perilymph)液体
  • 蜗管/中管(Scala media),内含内淋巴(Endolymph)液体
  • 鼓阶/鼓管(Scala tympani),内含外淋巴(Perilymph)液体

前庭阶在底端中止于卵圆窗(拉丁文、德文:Fenestra ovalis,英文:Oval window),是镫骨施力的部位。鼓阶在底端中止于圆窗(拉丁文、德文:Fenestra rotunda,英文:Round window),毗邻中耳腔,是声压释放的窗口。

赖斯纳氏膜(德文:Reißner-Membran,英文:Reissner's membrane)分隔前庭阶和蜗管,基底膜(拉丁文:Membrana basilaris,德文:Basilarmembran,英文:Basilar membrane)分隔蜗管和鼓阶。听觉转导器官柯蒂氏器(拉丁文:Organon spirale,英文:Organ of Corti,德文:Corti-Organ)坐落于基底膜之上、蜗管内部。前庭阶和鼓阶在蜗孔(Helicotrema)相通。

听神经的纤维通过基底膜与内毛细胞和外毛细胞形成突触连接。其细胞体位于在耳蜗中心部的螺旋神经节(拉丁文、德文:Ganglion spirale,英文:Spiral ganglion)。

耳蜗的比较解剖学

耳蜗的蜗牛形状只在哺乳类动物存在,一些其他动物的耳蜗虽然不具有螺旋形状(例如鸟类的线形耳蜗),但是仍然称为“耳蜗”。不同哺乳类动物的耳蜗长度和螺旋周数亦有区别。该区别反映了不同物种听觉频率范围的区别。

柯蒂氏器和听觉转导

柯蒂氏器的解剖结构。解剖结构术语拉丁语/英语-中文对照:1)Limbus:螺旋缘,2)Membrane tectoria:盖膜,3)英文:Outer hair cells,德文:äußere Haarzellen:外毛细胞,4)英文:: Inner hair cells,德文:Innenhaarzellen:内毛细胞,5)英文:Nerve fibers,德文:: Nervenfasern:听神经纤维,6)英文,德文:Hammer("Inner Rod"):内侧柱,7)Vas spirale:螺旋血管,8)英文:Basilar membrane,德文:Basilarmembran:基底膜,9)英文:Vestibule("outer rod"),德文:Vestibulum:外侧柱,10)英文:Cells of Deiters,德文:Deiters-Zellen:Deiters细胞
Tonotopie:频率拓扑

柯蒂氏器是听觉转导环节。右图所示为柯蒂氏器的主要解剖结构。

基底膜和频率拓扑的起源

基底膜是一个贯穿耳蜗底部自顶部的膜状结构。外淋巴的机械振动,在基底膜形成一个行波,行波在基底膜的不同部位形成不同的共振幅度。自底部至顶部,基底膜的横向宽度递增、机械张力亦递增,硬度递减。这两个趋势的综合作用因素是共振频率(亦称为特性频率(英文:Characteristic frequency,德文:Eigenfrequenz)或最佳频率(英文:Best frequency,德文:Beste Frequenz))自底部至顶部的递减。在人类,该共振频率的范围约为20-20000 Hz,即人类的正常听觉频率范围。

基底膜上的距卵圆窗距离与共振频率与间的关系称为频率拓扑(英文:Tonotopy,德文:Tonotopie)。基底膜的频率拓扑造成了毛细胞阵列和听神经阵列中的频率拓扑,也是上至大脑听觉皮层的整个听觉通路的频率拓扑的根本起源。由于听觉系统具有频率拓扑性质,其工作原理形似信号处理中的傅立叶分析或某种形式的小波分析。当然在听觉通路更高级的部分,频率拓扑逐渐模糊,处理的复杂性亦非此类工程方法所能概括。

毛细胞

毛细胞(英文:Hair cells,德文:Haarzellen)规则地分布于基底膜之上,自耳蜗底端至顶端的全长范围内形成平行的四列。其中靠近耳蜗中心的一列称为内毛细胞(英文:Inner hair cells,德文:Innenhaarzellen);远离中心的三列称为外毛细胞(英文:Outer hair cells,德文:äußere Haarzellen)。

两类毛细胞的顶部都有若干列静纤毛(Stereocilia),同时有少量动纤毛(Kinocilia,只在发育中的毛细胞存在)。当外淋巴在机械震动下带动盖膜和基底膜形成相对剪切运动时,纤毛发生摇摆。纤毛的摇摆通过一些尚未研究透彻的机制,导致纤毛顶部附近的离子通道的开闭,形成跨膜电流和感受器电位。而毛细胞死后亦無法再生,致人一生的聽覺能力不斷減退。

内毛细胞是感受器细胞,与若干个听神经纤维形成突触连接。负责将机械振动转化为与之相连的听神经纤维的动作电位。外毛细胞与来自上橄榄核的传出神经以及另一类型的传入神经(称为II型传入纤维)形成突触,其生理功能尚不完全清楚,一般认为与增强听神经的高度频率选择性、耳蜗的调节和自我保护机制有关。

支持细胞

柯蒂氏器除了毛细胞,还有多种类型的支持细胞,例如Deiter细胞等。这些细胞的功能可能与柯蒂氏器的机械特性、发育和代谢等机制有关。

與平衡感無關聯

耳蝸和前庭系統一起構成了內耳迷路,而負責感知平衡感的是半規管系統及耳石器官,雖然兩者和耳蝸也是位於內耳的結構,但耳蝸和人體的平衡能力並無關聯,合而為一是進化的結果。惟發生病變感染時很有可能同時影響兩者的運作。

参见

外部連結

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.