能带理论
能带理论(英語:)是用量子力学的方法研究固体内部电子运动的理论。是于20世纪初期,在量子力学确立以后发展起来的一种近似理论。它曾经定性地阐明了晶体中电子运动的普遍特点,并进而说明了导体与绝缘体、半导体的区别所在,解释了晶体中电子的平均自由程问题。
自20世纪六十年代,电子计算机得到广泛应用以后,使用电子计算机依据第一性原理做复杂能带结构计算成为可能,能带理论由定性发展为一门定量的精确科学。
能带结构简介
固体材料的能带结构由多条能带组成,类似于原子中的电子能级。电子先占据低能量的能带,逐步占据高能级的能带。根据电子填充的情况,能带分为传导带(简称导带,少量电子填充)和价电带(简称价带,大量电子填充)。导带和价带间的空隙称为禁带(电子无法填充),大小为能隙(即右边第二副图中所示的)。
能带结构可以解释固体中导体(没有能隙)、半导体(能隙 < 3 eV)、绝缘体 (能隙 > 3 eV) 三大类区别的由来。材料的导电性是由“传导带”中含有的电子数量决定。当电子从“价带”获得能量而跳跃至“传导带”时,在外电场的作用下,未填满的导带能带中的电子产生净电流,材料表现出导电性。
一般常见的金属材料,因为其传导带与价带之间的“能隙”非常小,在室温下电子很容易获得能量而跳跃至传导带而导电,而绝缘材料则因为能隙很大(通常大于3电子伏特),电子很难跳跃至传导带,所以无法导电。一般半导体材料的能隙约为1至3电子伏特,介于导体和绝缘体之间。因此只要给予适当条件的能量激发,或是改变其能隙之间距,此材料就能导电。
理论基础
对于理想晶体,其原子服从晶格排列,具有周期性,因而可以认为离子实的势场也具有周期性。晶体中的电子在一个周期性等效势场中运动,其波动方程为:
其中 为周期性等效势场,为波函数,为普朗克常数,为质量,为微分算符,为能量。
布洛赫波函数
布洛赫波函数是指形如 的波函数。其中具有晶格周期性(为晶格平移矢量)。
布洛赫本人证明,对于上述的含周期势场的薛定谔方程,其解必为布洛赫波函数的形式。这一定理被称之为布洛赫定理。它表明,对于周期势场中的波动方程而言,其本征函数的形式为一个平面波乘以一个周期性函数。
布洛赫函数可以表示为行波波包的叠加,由于德布罗意提出电子可以表示为波,从而布洛赫波函数可以表示在离子实周期性势场中自由传播的电子。
近自由电子模型
能带理论认为,固体内部的电子,不是被束缚在单个原子周围,而是在整个固体内部运动,仅仅受到离子实势场的微扰。本征波函数的主部是动量的本征态,散射只给出一阶修正。这个模型主要对金属适用。
参考文献
- 黄昆, 《固体物理学》, ISBN 7-04-001025-9