連心力
在物理學裏,作用力可以分類為連心力(central force)與非連心力。連心力的方向永遠指向一個固定點;稱此點為力中心點。許多宇宙最基本的力,像萬有引力、靜電力,都是連心力。而勞侖茲力的磁力部分則乃非連心力[1]。連心力以方程式表達為
- ;
其中,是連心力,是從力中心點到檢驗位置的徑向向量。
連心力可以進一步細分為兩種版本:強版本和弱版本。強版連心力要求連心力跟徑向距離有關:
- 。
弱版連心力沒有這嚴厲的條件。在物理學裏,大多數重要的連心力都是強版連心力;簡單擺的繩索作用於擺錘的拉力是一種弱版連心力,這拉力的方向是徑向方向,但對於小角度擺動,拉力的大小可以近似為一個常量,是擺錘感受到的重力大小。
平面運動
關於此粒子的運動,
- 。
此粒子的位置向量垂直於恆定的角動量,所以,此粒子的運動必局限於垂直於角動量的平面。
平面速度恆定
採用極坐標系來表示此粒子的平面運動,原點為力中心點。則角動量為
- ;
這裏,是粒子的質量、是角速度。
粒子與力中心點的連線,掃過的平面的平面速度為
- 。
所以,受連心力作用的粒子與力中心點的連線,掃過的平面,速度恆定。
連心勢
假若連心力是一個函數的負梯度:
- ,
則連心力是保守力:
- 連心力的旋度是0:
- ,
- 對於任何簡單的閉合迴路,連心力所做的機械功是0:
- 。
此函數是一個純量勢,注意到由於,純量勢只能跟有關:
- 。
稱為連心勢。連心力也只能跟有關:
- 。
這連心力是強版連心力。
有效勢能
一个運動於勢能的粒子的拉格朗日量等於動能减去勢能:
- 。
其拉格朗日方程式為
- 、
- ;
其中,為連心力。
由於連心勢與角坐標無關,因此其共軛動量(角動量)是個運動常數:
- 。
為了善用此運動常數,應用勒让德变换轉到相空間得到哈密顿量和運動方程式:
- 。
因此,可得到粒子的徑向運動等同於一個在以下有效勢能中的一維運動:
- 。
星体在萬有引力下運動的有效勢能是:
- 。
因此可以看到,有效勢能所造成的作用力,在短距离因為角動量守恆項目而排斥,在遠距离因為萬有引力項目而吸引。两者平衡點-即有效勢能最低點-正是圓形軌道半徑。
有心运动的轨迹的确定
有心力的运动轨道可以用比内()公式来计算。在平面极坐标系中,如果令:
其中为物体做有心运动时的角动量,则有:
解这个微分方程[2]可以得到运动轨迹的半径与角度的关系[3]:
平方反比类有心力的运动轨迹方程
将大小与到力心位置距离成平方反比的有心力表示为:,将它代入上述的方程,得到:
通过移项整理,可以得到一个二阶常系数线性非齐次方程:
的式子,其中为移项整理后关于这个多项式的外层系数。通过类比弹簧振子简谐运动方程的求解方法[4],可以类似地解得上述方程的通解:
可以看出,其运动轨迹为圆锥曲线中的一种。
注释和参考文献
- Goldstein, Herbert. 3rd. United States of America: Addison Wesley. 1980: pp. 7. ISBN 0201657023.
- 这是个二阶常系数非齐次线性方程。
- 陈世民. . 高等教育出版社. : 49页. ISBN 978-7-04-023918-8.
- 弹簧振子简谐振动的运动微分方程有通解为:,其中为积分常数,可以通过初始条件确定;,为简谐振的角速度。
- 陈世民. . 高等教育出版社. : 63页. ISBN 978-7-04-023918-8.
- 万有引力即是典型的平方反比类型的力。