Folding@home

Folding@home(簡稱FAHF@h)是一个研究蛋白质折叠、误折、聚合及由此引起的相关疾病的分布式计算工程。由斯坦福大学化學系的潘德实验室(Pande Lab)主持,於2000年10月1日正式啟動。Folding@home現時是世界上最大的分布式計算計劃,於2007年為吉尼斯世界纪录所承認[2]

Folding@home
原作者Vijay Pande
開發者潘德實驗室、SONYNvidiaATI
初始版本2000年10月1日
穩定版本
7.5.1
(2018年5月31日2018-05-31
操作系统Microsoft WindowsmacOSLinuxAndroid
系統平台跨平台: IA-32, x86-64; ARM
语言英語
类型分佈式計算
许可协议部份GPL、部份專有[1]
网站foldingathome.org

2004年3月8日,研究基因結構的Genome@home計劃終止,併入Folding@home。

意義

Folding@home專注於精確地模擬蛋白質折疊和錯誤折疊的過程,以便能更好地了解多種疾病的起因和發展,包括阿茲海默症亨廷顿舞蹈症牛海綿狀腦病(瘋牛症、狂牛症)、癌症囊胞性纖維症。到目前為止,Folding@home 已成功模擬5—10微秒的折疊過程,超出先前估計可模擬的時段數千倍。

很多研究蛋白質結構的論文,都有引用這個計劃的成果。[3]

伊利諾伊大學香檳分校在2002年10月22日發表的報告証實,該計劃採用分散模擬方式,所得出的結果是準確的[4]

生物醫學研究

亨丁頓舞蹈症

亨丁頓舞蹈症起因於第4對染色體異常,病發時會無法控制四肢,就像手舞足蹈一樣,並伴隨著智能減退,最後因吞嚥、呼吸困難等原因而死亡。

癌症

成骨不全症

成骨不全症,又稱脆骨症,是一種先天性遺傳疾病,男女性患病的比例大約相同。這種疾病會造成第一型膠原纖維缺陷,使骨骼忍受外力衝擊的能力較正常人差,即使是輕微的碰撞,也會造成嚴重的骨折,因此這類的病患被稱為「玻璃娃娃」或「玻璃骨」。

病毒

彭德實驗室正利用Folding@home對一些病毒進行研究,對象包括流行性感冒病毒、人類免疫缺陷病毒(HIV)等,以尋找阻止病毒進入細胞的方法。歷史上全球曾多次出現高死亡率的週期性流感疫潮,其中1918年的西班牙流感導致全球近一億人死亡。當病毒感染細胞時,會發生「脂質雙層融合」(Lipid bilayer fusion/membrane fusion),其蛋白質會與細胞的蛋白質進行對接,過程之後或能進入細胞,或自我裹在細胞膜內。

COVID-19

2020年2月27日,Folding@home发布新的计算程序以研究2019-nCoV病毒。[5]分散式運算項目 Folding@home 宣佈加入新冠病毒 2019-nCoV 的研究以幫助研究人員開發出治療方法。Folding@home 指出:2019-nCoV 是 SARS 冠狀病毒(SARS-CoV)的「近親」,並且以類似的方式起作用。為了瞭解這些訊息,需要我們對 2019-nCoV 峰值蛋白的結構進行建模。我們需要構建可以實現此目標的計算模型,但它需要大量的運算能力。[6]

Folding @ Home正在模擬 COVID-19 蛋白質動態,以尋找新的治療機會。Folding @ Home專案總監Greg Bowman說明,蛋白質是執行許多與生命相關之各種功能的分子機器,它們能夠感應到味覺與嗅覺,也能執行肌肉收縮或食物分解等任務,還能發揮結構性作用,在許多情況下,會自發性地折疊成緊湊的功能結構。另一方面,病毒也具備蛋白質,可用來抑制人們的免疫系統並自我繁殖,為了對付COVID-19,必須了解這些病毒蛋白質的活動方式,以設計出能夠阻止它們的療法。但這樣的模擬需要強大運算資源,因此Bowman號召全球電腦用戶貢獻自己的閒置運算資源。不過,目前Folding @ Home尚未替COVID-19設置獨立類別,現在想貢獻COVID-19蛋白質折疊運算的使用者可選擇「Any Disease」,相關專案現都暫居於該類別中。[7]

前一陣子Nvidia在官方Twitter推文,呼籲PC遊戲玩家聯合起來對抗新型冠狀病毒(COVID-19),方法是把自己閒置的GPU算力都捐出來,幫助科學家們做病毒研究──透過採用名為Folding@home的軟體,就能讓每個在家使用電腦的人把算力捐出來,每個人一點,就能以全球組合成網路的方式,構建起一個龐大的超級電腦。Folding@home在官網上提到,SARS-CoV病毒的「低解析度」結構已經有了,外加SARS-CoV和COVID-19的已知差別,Folding@home的這個項目就是要幫助構建起COVID-19棘突蛋白的結構,並識別抗體的靶點。而構建計算模型是需要海量算力的,這是Folding@home介入的原因。[8]

Folding@home和Rosetta@home

Folding@home和另一個分布式计算計劃Rosetta@home都做和蛋白質相關的研究,導致公眾常常把兩者的目標混淆,或不知道應該參加哪個計劃。為此,Folding@home的管理者、潘德实验室的領導人費積·潘德教授解說道:[9]

我熟悉貝克、朗根納頓和他們的工作,並(正如整個蛋白質研究社群一樣)覺得他們的工作至關重要,使我印象深刻。但是,Rosetta@home和Folding@home兩者想要解決的,是很不同的問題。
Rosetta@home只著重蛋白質完成折疊後的最終狀態,並非折疊的過程。而且,Rosetta@home也不會探究折疊可能出現的錯誤。他們的研究方法,對我們感興趣的問題和要對付疾病(例如阿茲海默症),也沒有幫助。
同時,人們也該明白,用電腦去準確預測蛋白質的結構,比起進行真正的實驗,仍是更艱難的。而從Folding@home所獲得的有關蛋白質折疊和誤折的資料(例如速度、能量)是和實驗結果相符合的,也告訴我們更多實驗不能發現的東西。而Rosetta@home,雖然已進行了很長時間,也取得一些很可觀的成果,但當要在Rosetta@home預測的結構和晶體結構(crystal structure)之間選擇時,都會選取晶體結構。因為他們的努力,我相信這將會改變,但要這夢想成真,還有一段很長的路要走。
因此,兩個計劃都很有價值,但處理的卻是不同的問題。我想有些人誤解了,以為Folding@home是關於預測蛋白質的結構(其實並不是,這是Rosetta@home的專長),Rosetta@home是研究與蛋白質折疊錯誤相關的疾病(其實並不是,這是Folding@home的專長),但是两个计划研究的项目却和那些人想的恰恰相反。希望這篇貼文有助澄清一下。

運作方式

Folding@home並不依靠強大的超級電腦進行計算,反而主要的貢獻者是成千上萬的個人電腦。每部參與的電腦都安裝了一個在背景執行的客戶端程序,在系統不忙碌的時候調用中央處理器執行模擬工作。現時世界上絕大部分的個人電腦,在一般的情況下都很少用盡本身的計算能力。Folding@home就是使用這些本來都浪費了的運算力量。

Folding@Home的客戶端會定時連接設於斯坦福大學的伺服器去取得“工作單元”(work units),即一種存有實驗資料的數據包,根據實驗資料進行計算。每個工作單元計算完成後,再傳回伺服器。

分析軟體

Folding@home的用戶端利用了經修改的TINKERGROMACSAMBERCPMD這四款分子模擬程式進行運算,並會在許可的情況下作出優化,以把運算速度加快。這四款模擬程式也被修改成多個不同版本,供多款作業平台使用,每款程式的變體會以編號“Core xx”作分類。

現役內核

  • GROMACS
    • Gromacs(Core 78)
      • 僅提供予所有單處理器平台使用。
    • DGromacs(Core 79)
      • Gromacs的雙倍精準版本,僅使用SSE2
      • 僅提供予所有單處理器平台使用。
    • DGromacsB (Core 7b)
      • 名義上是DGromacs的更新版本,實際上是基於SMPGPU版本的源碼的全新內核。兩者均在使用中。
      • Gromacs的雙倍精準版本,僅使用SSE2。
      • 僅提供予所有單處理器平台使用。
    • DGromacsC (Core 7c)
      • Gromacs的雙倍精準版本,僅使用SSE2。
      • 僅提供予單處理器的WindowsLinux平台使用。
    • GBGromacs(Core 7a)
    • Gromacs SREM(Core 80)
    • GroSimT(Core 81)
    • Gromacs 33(Core a0)
    • Gro-SMP(Core a1)
    • GroCVS(Core a2)
    • GroGPU2(Core 11及Core 13)
    • Gro-PS3(沒有編號,但也稱為SCEARD內核)
  • AMBER
    • PMD (Core 82)
      • 未優化
      • 僅提供予單處理器的Windows及Linux平台使用。

已停用內核

  • TINKER
    • Tinker core (Core 65)
      • 現已停止使用,並由速度更快的同類內核GBGromacs (Core 7a)所替代。
      • 未優化
      • 僅提供予所有單處理器平台使用。
  • GROMACS
    • GroGPU (Core 10)
  • CPMD
    • QMD (Core 96)

命令行界面版本

Folding@home Console version是Folding@home的命令行介面版本,由史丹佛大學化學系的潘德实验室主持,於2000年10月1日正式啟動,可精確地模擬蛋白質折疊和錯誤折疊的過程,以便能更好地了解多種疾病的起因和發展,Folding@home目前是世界上最大的分散式計算計劃。

高性能平台支援

圖形處理器

要快速運算蛋白質的摺疊效應,得需以高浮點運算能力的處理器進行,GPU具備強大浮點運算性能的優勢,Folding@home方面也著手開發供GPU使用的程式,把作業交給GPU運算。2006年10月2日,Folding@home公開發行供Windows系統使用的GPU測試版本,測試期間收到由450顆ATI X1900 GPU提供的31 TFLOPS運算性能,每顆顯核平均運算運力為一顆傳統CPU的70多倍。至2008年4月10日,第二代Windows GPU公開測試版推出,新版本支援ATI/AMD HD2xxx及HD3xxx系列,不用再透過DirectX介面與顯示核心溝通,並支援多GPU核心。供NVIDIA GPU使用的版本則利用CUDA技術,就可以使到GPU可以進行蛋白質摺疊運算。NVIDIA官方表示,只需全球0.1%支援CUDA的顯示卡進行運算,效能就可以達到7PFLOPS,遠超過超級電腦的計算水平[10]。現時已推出供啟用CUDA的NVIDIA GPU使用的公開測試版本。

PlayStation 3

索尼已加入Folding@home计划,從PS3的1.6版本韌體開始,支援該項目科学運算。由於PS3使用了Cell處理器,能提供強大的運算性能。當PS3闲置时,就會啟動運算程式,计算蛋白质的折叠效应,利用結果去研究各种疑难杂症。當CELL處理器運算時,NVIDIA的RSX顯核就會提供立體的蛋白质折叠實时图形展示。該图形展示效果不錯,支援1080p輸出,还有HDR效果。用家可利用手柄来控制觀賞角度。

PS3曾經為Folding@home提供最多的運算能力,隨著供NVIDIA GPU使用的軟件推出,NVIDIA GPU取代了PS3,成為了Folding@home的主力。截至2008年9月初,參與的PS3遊戲機為該計劃提供1,200多TFLOPS的運算能力,佔總數近35%。

多核處理器

隨著更多不同款式的多核處理器陸續推出,支援多核心的軟件也越來越多,Folding@home也加入支援對稱多處理機(SMP),希望藉此增強軟件的運算能力。透過利用MPI,軟件可同時使用多個內核進行運算。

支援SMP的Folding@home於2006年11月13日推出供x86-64 Linux及x86 Mac OS X執行的beta測試版本,現時也已推出供Win32使用的試版本,而供32位Linux執行的版本則仍在開發中。

估計能源消耗

PS3相关

一台PlayStation 3遊戲機的標稱功率為380W,由於Folding@Home是設計供CPU使用,因此會造成主機功耗達100%。但根據斯坦福方面有關PS3主機的常見問題,指出每台主機「在執行該程式時,其估計功率約為200W左右[11]」。截至2008年5月底,共有51,000多台PS3主機為該計劃提供1,400多TFlops的運算能力,每台PS3平均提供近30,000MFlops,以史丹福的每台主機200W輸出(使用90nm製程的處理器)估計,每瓦輸出提供150多MFlops[12]。隨著PS3的Cell處理器改用更微細的65nm及45nm製程,處理器的功耗會進一步下降,其每瓦輸出提供的運算的能力也會提高。

PC相关

取决于PC本身CPU最大能耗以及计算程序设置。

注意事项

  1. 本项目使用独立计算程序,可以在多平台下进行计算,包括PC、MAC 和 PS3
  2. 本项目的客户端分为3类,分别是CPU计算客户端,GPU计算客户端和PS3计算客户端
  3. 本项目的 GPU 计算客户端支持 AMD-ATI HD2000 及以上系列和 nVidia 所有支持 CUDA 系列的显卡
  4. 最新版的V7综合客户端同时支持多核CPU和AMD/ATI HD2000 及以上系列、NVIDIA 8xxx及以上系列显卡计算
  5. 为获得更好的计算效能建议使用V7综合客户端或者V6/High Performance Clients客户端计算

參考資料

  1. . [2015-03-09]. (原始内容存档于2012-09-21).
  2. . [2008-05-11]. (原始内容存档于2019-10-16).
  3. 參閱 Folding@home 網站上的論文列表 页面存档备份,存于
  4. C. Snow, H. Nguyen, V. S. Pande, and M. Gruebele. . Nature. 2002, 420 (6911): 102–106. PMID 12422224. doi:10.1038/nature01160.
  5. . (原始内容存档于2020-03-15).
  6. solidot. . cnBeta. 2020-03-04 [2020-04-11]. (原始内容存档于2020-04-11) (中文(中国大陆)‎).
  7. 陳曉莉. . iThome. 2020-03-17 [2020-04-11]. (原始内容存档于2020-04-11) (中文(台灣)‎).
  8. 黃燁鋒. . EE Times China. 2020-03-31 [2020-04-11]. (原始内容存档于2020-04-11) (中文(繁體)‎).
  9. 原文:Quote from Mr. Vijay Pande 页面存档备份,存于
  10. . [2008-05-26]. (原始内容存档于2009-02-14).
  11. . [2008-05-11]. (原始内容存档于2008-05-19).
  12. . [2008-06-03]. (原始内容存档于2012-09-21).

參見

外部链接

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.