射影定理

射影定理(在台灣被稱為「母子相似定理」)英語:),又稱歐幾里得定理英語:),是平面幾何中的一個定理。這個定理指出,在一個直角三角形中,一條直角邊的平方,相等於三角形的斜邊,乘以該邊在斜邊上的正投影[1]這個定理出現在歐幾里得所著《幾何原本》第一卷當中,是第 47 個命題畢氏定理證明過程的一部分。[2]

定理內容

ΔABC 中,C = 90°,以及 CDABADBD 分別是 ACBC 在底邊 AB 的正投影。

ΔABC 中,C = 90°。設 CDAB 的上的高,則有:

在這裡,ADBD 分別是 ACBC 在底邊 AB正投影,故定理以此為名。

證明

注意到 ΔABCΔACD相似三角形。因此可得

整理可得

同理,考慮相似三角形 ΔABCΔCBD,可得

整理可得

證明完畢。

相關定理

直角三角形面積

在上面的 ΔABC 中,我們有:

考慮三角形的面積,即可容易地證明。

勾股定理

勾股定理,是歐幾里得所著《幾何原本》第一卷當中的第 47 個命題。[2]這個定理指出:

勾股定理與射影定理有密切關係。事實上,在《幾何原本》中,射影定理正是該證明過程的一部分。從射影定理可知:

將兩條等式相加,則可得:

由於 AD + BD = AB,因此可得:

證明完畢。

幾何平均定理

幾何平均定理,是在《幾何原本》第六卷中的第 8 個命題。[3]這個定理指出:

也就是說,CDADBD幾何平均

與射影定理一樣,幾何平均定理可從相似三角形得證。

一般三角形的情況

邊長 ab 在底邊 c 的正投影,分別是 a cos βb cos α

對於 C ≠ 90° 的情況,三角形邊長的正投影可用餘弦求得:

以上結果從餘弦的定義直接可得。

把上面兩式相加,即可得:

以上公式,又被稱為「第一餘弦定理」。[4]然而,一般「餘弦定理」所指的,是另一條定理(「第二餘弦定理」),詳見餘弦定理

三維空間上的推廣

三直角四面體

一個四面體。若構成頂點的三個面角皆為直角,則這是一個三直角四面體。

射影定理在三維空間上,也有相應的推廣。設三直角四面體 ABCD 中,ADB = ∠ADC = ∠BDC = 90°。又設 D 在斜面 ΔABC正投影E。我們則有:

其中 ABC] 表示 ΔABC面積

把以上三條等式相加,則可得德古阿定理

德古阿定理可以視為畢氏定理在三維空間上的其中一種推廣。[5]

一般四面體

四面體 ABCD 中,設 ΔABC 為底面。又設 DΔABC正投影E。我們則有:

其中 αβγ 分別是 ADBDCD 與底面 ΔABC 的夾角。

另外亦有:

其中 θϕψ 分別是 ΔABDΔACDΔBCD 與底面 ΔABC 的夾角。

將上面三條等式相加,可得:

是上面提到「第一餘弦定理」的三維推廣。

任意圖形的投影

更進一步地說,面積為 S 的任意平面圖形,在底面的正投影的面積 Sproj,都可用餘弦求得:

其中 θ 是該平面圖形與底面的夾角。

參考資料

  1. 曹才翰 主編; 沈復興, 孫瑞清, 餘炯沛等 副編. . 瀋陽出版社. 1991. ISBN 9787805564241.
  2. Euclid. . c 300 BC.
  3. Euclid. . c 300 BC.
  4. 中原晴彦. (PDF). 順天サイエンスライブラリー. 2003.
  5. Sergio A. Alvarez. (PDF). Center for Nonlinear Analysis and Department of Mathematical Sciences, Carnegie Mellon University.

參見

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.