费马大定理

費馬大定理(亦名费马最後定理,法語:,英語:),其概要為:

整數时,关于, , 不定方程

無正整數解。

以上陳述由17世纪法国数学家费马提出,被稱為「费马猜想」,直到英國數學家安德魯·懷爾斯(Andrew John Wiles)及其學生理查·泰勒(Richard Taylor)於1995年將他們的證明出版後,才稱為「費馬最后定理」。這個猜想最初出現費馬的《頁邊筆記》中。儘管費馬表明他已找到一個精妙的證明而頁邊没有足夠的空位寫下,但仍然經過數學家們三個多世紀的努力,猜想才變成定理。在衝擊這個数论世紀难题的過程中,無論是不完全的還是最後完整的證明,都給數學界帶來很大的影響;很多的數學結果、甚至數學分支在這個過程中誕生,包括代數幾何中的橢圓曲線模形式,以及伽羅瓦理論赫克代數等。這也令人懷疑當初費馬是否真的找到正確證明。而安德魯·懷爾斯由於成功證明此定理,獲得包括邵逸夫獎在内的数十个奖项。

歷史

丢番圖拉丁文譯本第11卷第8命题

1637年,费马在阅读丢番图《算术》拉丁文译本时,曾在第11卷第8命题旁写道:

畢竟費馬沒有寫下证明,而他的其它猜想對數學貢獻良多,由此激发许多数学家对这一猜想的兴趣。数学家们的有关工作丰富数论的内容,推动数论的发展。

欧拉在1770年的时候,证明n=3时定理成立。[2]

1825年,高斯和热尔曼同时独立证明费马定理5次幂。

费马大定理提出之后的二百年內,對很多不同的特定的,費馬大定理被證明。但对于一般情況,人们仍一籌莫展。

1908年,德国人「保羅·弗里德里希·沃爾夫斯凱爾」宣布以10万馬克作为奖金奖给在他逝世後一百年內,第一个证明该定理的人,吸引不少人嘗試並遞交他們的「證明」。在一戰之後,馬克大幅貶值,該奖金的吸引力也大幅下降。

1983年,格尔德·法尔廷斯證明莫德尔猜想。作为推论,对于给定的整数,至多存在有限组互素使得

1986年,格哈德·弗賴(Gerhard Frey)提出“ε-猜想”:若存在使得,即如果費馬大定理是錯的,則橢圓曲線

會是谷山-志村猜想的一個反例。格哈德·弗賴的猜想隨即被肯尼斯·阿蘭·黎貝證實。此猜想顯示費馬大定理与橢圓曲線及模形式的密切關係。

1995年,安德鲁·怀尔斯理查·泰勒在一特例範圍内證明谷山志村猜想,弗賴的橢圓曲線剛好在這一特例範圍内,從而證明費馬大定理。

懷爾斯證明費馬大定理的過程亦甚具戲劇性。他用七年時間,在不為人知的情況下,得出證明的大部分;然後於1993年6月在一個學術會議上宣佈他的證明,並瞬即成為世界頭條。但在審查證明的過程中,專家發現一個極為嚴重的錯誤。懷爾斯和泰勒之後用近一年時間嘗試補救,終在1994年9月以一個之前懷爾斯拋棄過的方法得到成功,這部分的證明與岩澤理論有關。他們的證明刊在1995年的《数学年刊》(Annals of Mathematics)之上。

在怀尔斯证明之前,沃爾夫斯凱爾委員會(Wolfskehl committee)收到数千个不正确的证明,所有纸张叠加达到约10英尺(3米)的高度。[3] 仅在第一年(1907-1908)就提出621個证明,但到了20世纪70年代,各家證明方法的提出已經降至每個月大约3-4個。根据沃爾夫斯凱爾委員會评论家施里希廷(F. Schlichting)的说法,大多数证明都是基于学校教授的基本方法,并且提交证明的人大多“有技术教育但职业生涯失败”。[4]用数学历史学家霍华德·伊夫斯的话来说,“费马大定理在数学里有一个特殊的现象,即在于它是错误证明数量最多的数学题。”[5]

参见

參考資料

  1. 拉丁文原文:
  2. 用户1915054266. . 快资讯. 2019-04-29 [2019-05-21]. (原始内容存档于2019-06-10) (中文(简体)‎).
  3. Singh, p.295.
  4. Singh, pp. 120–125, 131–133, 295–296; Aczel, p. 70.
  5. Koshy T. . New York: Academic Press. 2001: 544. ISBN 978-0-12-421171-1.
  • Fermat's Enigma (previously published under the title Fermat's Last Theorem), by Simon Singh; Bantam Books; ISBN 0-8027-1331-9 (hardcover, September 1998)

外部連結

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.