数论

正整数按乘法性质划分,可以分成質数合数1,質数產生了很多一般人能理解卻又懸而未解的問題,如哥德巴赫猜想孿生質數猜想等。即,很多問題虽然形式上十分初等,事实上却要用到许多艰深的数学知识。这一领域的研究从某种意义上推动了数学的发展,催生了大量的新思想和新方法。數論除了研究整數及質數外,也研究一些由整數衍生的數(如有理數)或是一些廣義的整數(如代數整數)。

數論纯粹数学的分支之一,主要研究整数的性質。被譽為「最純」的數學領域。

整数可以是方程式的解(丟番圖方程)。有些解析函數(像黎曼ζ函數)中包括了一些整數、質數的性質,透過這些函數也可以了解一些數論的問題。透過數論也可以建立實數和有理數之間的關係,並且用有理數來逼近實數(丟番圖逼近)。

數論早期稱為算術。到20世紀初,才開始使用數論的名稱[1],而算術一詞則表示「基本運算」,不過在20世紀的後半,有部份數學家仍會用「算術」一詞來表示數論。1952年時數學家哈罗德·达文波特仍用「高等算術」一詞來表示數論,戈弗雷·哈羅德·哈代愛德華·梅特蘭·賴特在1938年寫《數論介紹》簡介時曾提到「我們曾考慮過將書名改為《算術介紹》,某方面而言是更合適的書名,但也容易讓讀者誤會其中的內容」[2]

卡尔·弗里德里希·高斯曾說:「數學是科學的皇后,數論是數學的皇后。」[3]

数论初期的铺垫工作

数论早期铺垫有三大内容:

  1. 欧几里得证明无穷多个。
  2. 寻找的埃拉托斯特尼筛法;欧几里得求最大公约数的辗转相除法
  3. 公元420至589年(中国南北朝时期)的孙子定理

以上工作成为现代数论的基本框架。

数论中期工作

在中世紀時,除了1175年至1200年住在北非和君士坦丁堡斐波那契有關等差數列的研究外,西歐在數論上沒有什麼進展。

数论中期主要指15-16世纪到19世纪,是由费马梅森欧拉高斯勒让德黎曼希尔伯特等人发展的。最早的發展是在文藝復興的末期,對於古希臘著作的重新研究。主要的成因是因為丟番圖的《算術》(Arithmetica)一書的校正及翻譯為拉丁文,早在1575年Xylander曾試圖翻譯,但不成功,後來才由Bachet在1621年翻譯完成。

費馬

費馬

皮埃爾·德·費馬(1601–1665)沒有著作出版,他在數論上的貢獻幾乎都在他寫給其他數學家的信上,以及書旁的空白處[4]。費馬的貢獻幾乎沒有數論上的證明[5],不過費馬重覆的使用數學歸納法,並引入无穷递降法

費馬最早的興趣是在完全數相亲数,因此開始研究整數因數,這也開始1636年之後的數學研究,也接觸到當時的數學社群[6]。他已在1643年研讀過巴歇版本的丟番圖著作,他的興趣開始轉向丟番圖方程平方數的和[7]

費馬在數論上的貢獻有:

  • 費馬小定理 (1640)[8],若不是質數的倍數,則
  • 互質,則無法被任何除4後同餘-1的質數整除[9],而且每個除4後同餘1的質數都可以表示為.[10],這二個是在1640年證明的,在1649年他在寫給惠更斯的信上提到他用无穷递降法證明的第二個問題[11],費馬和福蘭尼可在其他平方形式上也有一些貢獻,不過其中有些錯誤及不嚴謹之處[12]
  • 向英國的數學家提出了求解的挑戰(1657年),但在幾個月後就由Wallis及Brouncker證明[13]。費馬認為他們的證明有效,但用了一個在其中未經證明的演算法,費馬自己是由无穷递降法找到證明。
  • 發展許多找亏格0或1曲線上點的方法,作法類似丟番圖,有許多特殊的步驟,使用了切線法構建曲線,而不是用割線法[14]
  • 證明不存在非尋常的正整數解。

費馬在1637年聲稱(費馬最後定理)證明了對於大於2的任意整數,不存在 的非尋常的正整數解(目前已知唯一的证明是由數學家安德魯·懷爾斯及其學生理查·泰勒證明,遠遠的超過他的時代),但只在一本丟番圖著作的旁邊寫到,而且他沒有向別人宣稱他已有了證明[15]

歐拉

歐拉

歐拉(1707–1783)對數論的興趣最早是由他的朋友哥德巴赫所引發,讓他開始專注在費馬的一些研究上[16][17],在費馬沒有使當代的數學家注意此一主題後,歐拉的出現稱為「現代數論的重生」[18]。歐拉數論的貢獻包括以下幾項[19]

  • 費馬研究的證明,包括費馬小定理(歐拉延伸到非質數的模數),以及若且唯若,這項研究可推導到所有整數都可以表示為四個平方數的證明(第一個完整證明是由約瑟夫·拉格朗日提出,費馬很快的也提出證明),和沒有非零整數解的證明,表示為費馬最後定理時成立,歐拉用類似方式證明了的情形。
  • 佩爾方程,最早誤以為是歐拉證明[20],歐拉也寫了連分數和佩爾方程的關係[21]
  • 二次式,繼費馬之後,歐拉繼續研究哪些質數可以表示為,其中有些顯示二次互反律的性質[22] [23][24]
  • 丟番圖方程歐拉研究一些虧格為0或1的丟番圖方程[25][26],特別的是他研讀丟番圖的著作,試圖要找到系統化的方法,但時機尚不成熟,幾何數論才剛形成而已[27]。歐拉有注意到丟番圖方程和椭圆积分之間的關係[27]

分支

初等數論
意指使用不超過高中程度的初等代數處理的數論問題,最主要的工具包括整數的整除性與同餘。重要的結論包括中國餘數定理費馬小定理二次互反律等等。
解析數論
借助微積分複分析的技術來研究關於整數的問題[28],主要又可以分為積性數論加性數論兩類。積性數論藉由研究積性生成函數的性質來探討質數分佈的問題,其中質數定理狄利克雷定理為這個領域中最著名的古典成果。加性數論則是研究整數的加法分解之可能性與表示的問題,華林問題是該領域最著名的課題。此外例如篩法圓法等等都是屬於這個範疇的重要議題。
代數數論
引申代數數的話題,關於代數整數的研究,主要的研究目標是為了更一般地解決不定方程的問題,而為了達到此目的,這個領域與代數幾何之間有相當關聯,比如類域論(class field theory)就是此間的顛峰之作。
算術代数幾何
研究有理係數多變數方程組的有理點,其結構(主要是個數)和該方程組對應的代數簇的幾何性質之間的關係,有名的費馬最後定理、莫德爾猜想(法爾廷斯定理)、Weil猜想,和千禧年大獎難題中的貝赫和斯維訥通-戴爾猜想都屬此類。
幾何数论
主要在於透過幾何觀點研究整數(在此即格子點)的分佈情形。最著名的定理為闵可夫斯基定理
計算数论
借助電腦的算法幫助數論的問題,例如素數測試和因數分解等和密碼學息息相關的話題。
超越数论
研究數的超越性,其中對於歐拉常數與特定的黎曼ζ函數值之研究尤其令人感到興趣。
組合数论
利用組合和機率的技巧,非構造性地證明某些無法用初等方式處理的複雜結論。這是由保罗·埃尔德什開創的思路。
模形式
數學上一個滿足一些泛函方程與增長條件、在上半平面上的(複)解析函數

應用

參考資料

  1. Heath, Thomas L. . Oxford: Clarendon Press. 1921 [2016-02-28].
  2. Apostol, Tom M. . (Review of Hardy & Wright.) Mathematical Reviews (MathSciNet) MR0568909. American Mathematical Society. n.d. [2013-05-06]. (原始内容存档于2012-07-31).
  3. . [2014-09-30]. (原始内容存档于2014-10-06).
  4. Weil 1984, pp. 45–46.
  5. Weil 1984,第118页,數論比其他數學領域容易出現這様的情形(說明在Mahoney 1994,第284页
  6. Mahoney 1994,第48, 53–54页
  7. Weil 1984, p. 53.
  8. Tannery & Henry 1891,Vol. II, p. 209, Letter XLVI from Fermat to Frenicle, 1640, cited in Weil 1984,第56页
  9. Tannery & Henry 1891,Vol. II, p. 204, cited in Weil 1984,第63页
  10. Tannery & Henry 1891, Vol. II, p. 213.
  11. Tannery & Henry 1891, Vol. II, p. 423.
  12. Weil 1984, pp. 80, 91–92.
  13. Weil 1984, p. 92.
  14. Weil 1984, Ch. II, sect. XV and XVI.
  15. Weil 1984, p. 104.
  16. Weil 1984, pp. 2, 172.
  17. Varadarajan 2006, p. 9.
  18. Weil 1984,第2页 and Varadarajan 2006,第37页
  19. Varadarajan 2006,第39页 and Weil 1984,第176–189页
  20. Weil 1984,第174页
  21. Weil 1984, p. 183.
  22. Varadarajan 2006, pp. 44–47.
  23. Weil 1984, pp. 177–179.
  24. Edwards 1983, pp. 285–291.
  25. Varadarajan 2006, pp. 55–56.
  26. Weil 1984, pp. 179–181.
  27. Weil 1984, p. 181.
  28. Apostol, Tom M., , Undergraduate Texts in Mathematics, New York-Heidelberg: Springer-Verlag, 1976, ISBN 978-0-387-90163-3, MR 0434929, Zbl 0335.10001

參考書目

  • Weil, André. . Boston: Birkhäuser. 1984 [2014-10-06]. ISBN 978-0-8176-3141-3. (原始内容存档于2014-10-12).
  • Mahoney, M. S. Reprint, 2nd. Princeton University Press. 1994 [2014-10-06]. ISBN 978-0-691-03666-3. (原始内容存档于2014-10-12).
  • Tannery, Paul; Henry, Charles (eds.); Fermat, Pierre de. . (4 Vols.). Paris: Imprimerie Gauthier-Villars et Fils. 1891 (法语及拉丁语). Volume 1 Volume 2 Volume 3 Volume 4 (1912)
  • Varadarajan, V. S. . American Mathematical Society. 2006 [2014-10-06]. ISBN 978-0-8218-3580-7. (原始内容存档于2014-10-12).
  • Edwards, Harold M. . Mathematics Magazine (Mathematical Association of America). November 1983, 56 (5): 285–291. JSTOR 2690368. doi:10.2307/2690368.

外部連結

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.