二次函数

数学中,二次函数英語:quadratic function)表示形为 ,且是常数)的多项式函数,其中,为自变量[lower-alpha 1]分别是函数解析式的二次项系数、一次项系数和常数项。二次函数的图像是一条主轴平行于轴的抛物线[1]

解析式:

二次函数表达式的定义是一个二次多项式,因为的最高冪次是2。

如果令二次函数的值等于零,则可得一个一元二次方程式二次方程式。该方程的解称为方程的或函数的零点。

历史

大约在公元前480年,古巴比伦人和中国人已经使用配方法求得了二次方程的正根,但是并没有提出通用的求解方法。公元前300年左右,欧几里得提出了一种更抽象的几何方法求解二次方程。

7世纪印度的婆罗摩笈多是第一位懂得用使用代数方程的人,它同时容许有正负数的根。[lower-alpha 2]

11世纪阿拉伯花拉子米独立地发展了一套公式以求方程的正数解。亚伯拉罕·巴希亚(亦以拉丁文名字萨瓦索达著称)在他的著作Liber embadorum,首次将完整的一元二次方程解法传入欧洲[lower-alpha 3]

二次方程 的两个为:

解方程后,我们会得到两个根:。则就是二次函数与轴的交点。根的类型如下:

  • 為一元二次方程式的判別式,又記作D。
  • ,则方程有两个不相等的根,也即与轴有两个不重疊的交点,因为是正数。
  • ,则方程有两个相等的根,也即与轴有一个切点,因为是零。
  • ,则方程没有實數根,也即与 轴没有交点,因为共軛複數

,我们可以把因式分解

二次函数的形式

二次函数可以表示成以下三种形式:

  • 称为一般形式多项式形式
  • 称为因子形式交点式,其中是二次方程的两个根,,抛物线轴的两个交点。
  • 称为标准形式顶点形式即為此二次函數的頂點。

把一般形式转换成因子形式时,我们需要用求根公式来算出两个根,或是利用十字交乘法(適用於有理數)。把一般形式转换成标准形式时,我们需要用配方法。把因子形式转换成一般形式时,我们需要把两个因式相乘并展开。把因子形式轉換成標準形式有特殊的方法。

代表了二次函數的對稱軸,因此兩根的平均數即為

  • 展開後比較後可得

不通過公式:

  • (也作)

而在三種形式中皆出現的為此二次函數的領導係數,決定二次函數圖像開口的大小與方向。

图像

  • 系数控制了二次函数从顶点的增长(或下降)速度,越大,函数就增长得越快。
  • 系数控制了抛物线的对称轴(以及顶点的坐标)。
  • 系数控制了抛物线穿过轴时的倾斜度(导数)。
  • 系数控制了抛物线的高度,它是抛物线与轴的交点。
函数 图像 函数变化 对称轴 开口方向 最大(小)值
时,的增大而增大;
时, 的减小而增大

向上
时, 的增大而减小;
时, 的减小而减小

向下
时, 的增大而增大;
时, 的减小而增大

向上
时,的增大而减小;
时, 的减小而减小

向下
时,的增大而增大;
时,的减小而增大
向上
时,的增大而减小;
时,的减小而减小
向下

x 截距

当函数与轴有两个交点时,设这两个交点分别为 ,由根与系数的关系得出[lower-alpha 4]

[2]

顶点

抛物线的顶点是它转弯的地方,也称为驻点。如果二次函数是标准形式,则顶点为。用配方法,可以把一般形式化为:

[3][4] 因此在一般形式中,抛物线的顶点是:

如果二次函数是因子形式,则两个根的平均数

就是顶点的坐标,因此顶点位于

时,顶点也是最大值;时,则是最小值。 经过顶点的竖直线

又称为抛物线的对称轴。

  • 最大值和最小值
函数的最大值和最小值总是在驻点(又称临界点,稳定点)取得。以下的方法是用导数法来推导相同的事实,这种方法的好处是适用于更一般的函数。
设有函数,寻找它的極值时,我们必须先求出它的导数
然后,求出的根:
因此,值。现在,为了求出,我们把代入
所以,最大值或最小值的坐标为:

二次函数的平方根

二次函数的平方根的图像要么是椭圆,要么是双曲线。如果,则方程描述了一条双曲线。该双曲线的轴由对应的抛物线的最小值决定。如果最小值是负数,则双曲线的轴是水平的。如果是正数,则双曲线的轴是竖直的。如果,则方程的图像要么是一个椭圆,要么什么也没有。如果对应的抛物线的最大值是正数,则它的平方根描述了一个椭圆。如果是负数,则描述了一个空集

二元二次函数

二元二次函数是以下形式的二次多项式:

这个函数描述了一个二次曲面。把设为零,则描述了曲面与平面的交线,它是一条圆锥曲线

最小值/最大值

如果,则函数没有最大值或最小值,其图像是双曲抛物面

如果 ,则当时函数具有最小值,当具有最大值。其图像是椭圆抛物面。

二元二次函数的最大值或最小值在点 取得,其中:

如果,则函数没有最大值或最小值,其图像是抛物柱面。

如果,则函数在一条直线上取得最大值/最小值。当时取得最大值,时取得最小值。其图像也是抛物柱面。

註釋

  1. 注:自变量的取值范围为任何实数
  2. 参见婆羅摩笈多#代數
  3. 参见花拉子米#代數
  4. 参见韦达定理

参考资料

  1. . 北京: 北京师范大学出版社. 2014 [2015-08-05]. ISBN 9787303136933. (原始内容存档于2018-08-08).
  2. 二次函数公式汇总(文档)百度文库
  3. 贾士代. . 北京: 首都师范大学出版社. : 49–55. ISBN 7-81039-028-7.
  4. . [2015-08-06]. (原始内容存档于2015-07-29).

参考书目

  • 《代数1》, Glencoe, ISBN 0-07-825083-8
  • 《代数2》,Saxon, ISBN 0-939798-62-X

參見

外部連結

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.