埃尔米特矩阵
埃尔米特矩阵(英語:,又译作厄米特矩阵,厄米矩阵),也稱自伴隨矩陣,是共轭對稱的方陣。埃尔米特矩阵中每一个第i行第j列的元素都与第j行第i列的元素的复共轭。
对于
有:
记做:
例如:
就是一个埃尔米特矩阵。
显然,埃尔米特矩阵主对角线上的元素都是实数的,其特征值也是实数。对于只包含实数元素的矩阵(实矩阵),如果它是对称阵,即所有元素关于主对角线对称,那么它也是埃尔米特矩阵。也就是说,实对称矩阵是埃尔米特矩阵的特例。
性质
- 若A和B是埃尔米特矩阵,那么它们的和A+B也是埃尔米特矩阵;而只有在A和B满足交换性(即AB = BA)时,它们的积才是埃尔米特矩阵。
- 可逆的埃尔米特矩阵A的逆矩阵A-1仍然是埃尔米特矩阵。
- 如果A是埃尔米特矩阵,对于正整数n,An是埃尔米特矩阵。
- 方阵C与其共轭转置的和是埃尔米特矩阵,
- 方阵C与其共轭转置的差是斜埃尔米特矩阵。
- 任意方阵C都可以用一个埃尔米特矩阵A与一个斜埃尔米特矩阵B的和表示:
- 。
埃尔米特序列
埃尔米特序列(亦或埃尔米特向量)指满足下列条件的序列ak(其中k = 0, 1,…, n):
- 。
实数序列的离散傅里叶变换是埃尔米特序列。反之,一个埃尔米特序列的逆离散傅里叶变换是实序列。
参考资料
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.