二面體
在幾何學中,二面體是指由2個面組成的多面體,但由於三維空間中的多面體至少又具有4個面,因此少於四個面的多面體只能是退化的,換句話說,小於4個面的多面體無法具有非零的體積。二面體中最常見的就是多邊形二面體,即由兩個全等的平面圖型封閉出的零體積空間所形成的退化多面體。最簡單的二面體是一種球面鑲嵌:一角形二面體,它的對偶是一面形。
部分的二面體 | |
---|---|
二面形 |
一角形二面體 |
常見的二面體
名稱 | 種類 | 圖像 | 符號 | 頂點 | 邊 | 面 | χ | 面的種類 | 對稱性 |
---|---|---|---|---|---|---|---|---|---|
一角形二面體 | 多邊形二面體 | {1,2} |
1 | 1 | 2 | 2 | 2個一角形 | C1v (*22) | |
二面形 | 多面形 多邊形二面體 |
{2,2} |
2 | 2 | 2 | 2 | 2個二角形 | D2h (*222) | |
三維多邊形 | 多邊形二面體 | {n,2} |
n | n | 2 | 2 | 2個全等的多邊形 | Dnh (*n22) | |
二階無限邊形鑲嵌[2] | 鑲嵌圖 | {∞,2} |
∞ | ∞ | 2 | 2 | 2個無限邊形 | [∞,2], (*∞22) | |
{4,4}1,1 | 環形多面體 | {4,4}1,1 | 2 | 4 | 2 | 0 | 2個正方形 | ||
{3,6}1,0 | 環形多面體 | {3,6}1,0 | 1 | 3 | 2 | 0 | 2個正三角形 | ||
圓錐體 | 非嚴格多面體 曲面 柱體 |
1 | 1 | 2 | 2 | 1個曲面 1個圓形 |
二面形
一個二面形,是一種由二個鑲嵌在球體上的球弓形組成的多面形,施萊夫利符號中利用{2,2}來表示,該符號表達了二面形的結構——每個頂點都是2個二角形的公共頂點。
一角形二面體
一角形二面體是一種退化的多邊形二面體,由2個一角形組成,圖形只有1個頂點,該頂點為2個一角形的公共頂點,在施萊夫利符號中用{1,2}表示,其具有2個面、1條邊和1個頂點,對偶多面體是一個一面體:一面形。
在球面幾何學中,一角形二面體是一個球面上的一個圓上任一頂點。這形成了一個二面體,施萊夫利符號中利用{1,2}來表示,與的兩個半球形一角形面,共用一個360°的邊和一個頂點。它的對偶是一面形,施萊夫利符號中利用{2,1}來表示,具有一個二角形面(一個完整的360°弓形),一個180°的邊緣,和兩個頂點,因此屬於一面體。
圓錐
圓錐也能算是一種二面體,因為它可以看做是只有兩個面的幾何體,由一曲面(側面)和一圓形平面(底面)所組成。
參考文獻
- The Symmetries of Things 2008, John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, ISBN 978-1-56881-220-5
- Conway (2008)[1], p. 263
- Gausmann, Evelise; Roland Lehoucq, Jean-Pierre Luminet, Jean-Philippe Uzan, Jeffrey Weeks. . Classical and Quantum Gravity. 2001, 18: 5155–5186. arXiv:gr-qc/0106033. doi:10.1088/0264-9381/18/23/311.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.