完整群

微分几何中,一個微分流形上的联络完整(holonomy) (又譯和樂),描述向量繞閉圈平行移动一週回到起點後,與原先相異的現象。平聯絡的和樂是一種單值性現象,其於全域有定義。曲聯絡的和樂則有非平凡的局域和全域特點。

流形上任意一種聯絡,都可由其平行移動映射給出相應的和樂。常見的和樂由具有特定對稱的聯絡給出,例如黎曼几何列维-奇维塔联络的和樂(稱為黎曼和樂)。向量丛聯絡的和樂、嘉当联络的和樂,以及主丛聯絡的和樂。在該些例子中,聯絡的和樂可用一個李群描述,稱為和樂群。聯絡的和樂與其曲率密切相關,見安布羅斯-辛格定理

對黎曼和樂的研究導致了若干重要的發現。其最早由Élie Cartan 1926引入,以用於對稱空間的分類上。然而,很久以後,和樂群才用於更一般的黎曼幾何上。1952年, 乔治·德拉姆證明了德拉姆分解定理:若黎曼流形的切丛可分解成局域和樂群作用下不變的子空間,則該流形分解為黎曼流形的笛卡儿积。稍後,於1953年,馬塞爾·伯格 給出所有不可約和樂的分類[1]。黎曼和樂的分解和分類適用於物理和弦論

定义

向量叢聯絡的和樂

M光滑流形E 為其上的 k向量丛,∇ 為 E 上的聯絡。給定 M 上一點 x 和以 x 為基點的分段光滑環圈 γ : [0,1] → M, 該聯絡定義了一個平行移动映射 Pγ : ExEx. 該映射是可逆線性映射,因此是一般线性群 GL(Ex) 的元素。∇ 以 x 為基點的和樂群定義為

x 為基點的限制和樂群是由可縮環圈 γ 給出的子群.

M 連通,則不同基點 x 的和樂群 僅相差 GL(k, R) 的共軛作用。更具體說,若 γM 中由 xy 的路徑,則

選取 Ex 的另一組基(即以另一種方式將 Ex 視為與 Rk 等同)同樣會使和樂群變成 GL(k, R) 中另一個共軛子群。非完全嚴格的討論中(下同),可將基點略去,但倘如此行,則和樂群僅在共軛意義下有良好定義。

和樂群的重要性質包括:

  • 是 GL(k, R) 的連通李子群
  • 單位連通支
  • 存在自然的滿群同態 其中 M 的基本群。該同態將同倫類 映到陪集
  • M 單連通,則
  • ∇ 為平(即曲率恆零)当且仅当 為平凡群。

在物理学中,威爾森迴圈是 tr(P)(特徵標理論)。

主叢聯絡的和樂

主叢聯絡的和樂與向量叢相倣。設 G李群P仿緊光滑流形 M 上的G。設 ωP 上的聯絡。給定 M 中一點 x, 以 x 為基點的分段光滑環圈 γ : [0,1] → M, 以及 x 纖維上一點 p, 該聯絡定義了唯一的水平提升 使得 水平提升的終點 未必是 p, 因為其可為 x 纖維上的另一點 p·g. 若兩點 pq 之間有分段光滑的水平提升路徑連接,則稱 p ~ q. 如此,~ 是 P 上的等價關係

ωp 為基點的和樂群定義為

若在定義中僅允許可縮環圈 γ 的水平提升,則得到以 p 為基點的受限和樂群 . 其為和樂群 的子群。

MP連通,則不同基點 p 的和樂群僅在 G 互為共軛。更具體說,若 q 是另一個基點,則有唯一的 gG 使得 q ~ p·g. 於是,

特別地,

再者,若 p ~ q, 則 因此,有時可省略基點不寫,但須留意這會使得和樂群僅在共軛意義下有良好定義。

和樂群的若干性質包括:

  • G 的連通李子群
  • 單位連通支
  • 存在自然的滿群同態
  • M 單連通,則
  • ω 為平(即曲率恆零)当且仅当 為平凡群。

和樂叢

同上,設 M 為連通仿緊流形,P 為其上的主 G 叢,ωP 上的聯絡。設 pP 為主叢上的任意一點。以 H (p) 表示 P 中可與 p 用水平曲線相連的點的集合。則可證明 H (p) 連同其到 M 的投影也構成 M 上的主叢,且具有結構群 (即 H (p) 是主 叢)。 此主叢稱為該聯絡 ω 經過 p和樂叢ω 限制到 H (p) 上也是一個聯絡,因為其平行移動映射保持 H (p) 不變。故 H (p) 是該聯絡的約化主叢。此外,H (p) 任何真子叢都不被平行移動保持,所以其在該類約化主叢之中為最小。[2]

與和樂群類似,和樂叢在環繞它的主叢 P等變。具體說,若 qP 是另一個基點,則有 gG 使得 q ~ p g(按假設,M 是路連通的)。故 H (q) = H (p) g. 於是,兩者在和樂叢上導出的聯絡是相容的,即:兩個聯絡的平行移動映射恰好相差了群元素 g.

單延拓群

和樂叢 H (p) 是主 叢,因此受限和樂群 (作為全個和樂群的正規子群)也作用在 H (p) 上。離散群 稱為聯絡的單延拓。其作用在商叢 上。存在滿同態 使得 作用在 上。基本群的這個群作用稱為基本群的單延拓表示[3]

局域及無窮小和樂

若 π: PM 為主叢,ω 為 P 的聯絡,則 ω 的和樂可限制到 M 的開集的纖維上。若 UM 的連通開集,則將 ω 限制到 U 上可得叢 π−1U 的聯絡。該叢的和樂群記為 而受限和樂群則記為 其中 p 為滿足 π(p) ∈ U 的點。

UV 為包含 π(p) 的兩個開集,則有包含關係

p 點的局域和樂群定義為

其中 Uk 為任意一族滿足 的遞降(即 )連通開集。

局域和樂群有以下性質:

  1. 其為受限和樂群 的連通李子群。
  2. 每點 p 都有鄰域 V 使得 局域和樂群僅取決於 p, 而非序列 Uk 的選取。
  3. 局域和樂群在結構群 G 的作用下等變,即對任意 gG, (注意由性質 1, 局域和樂群是 G 的連通李子群,故伴隨 Ad 有定義。

局域和樂群不一定有全域的良好性質,例如流形的不同點上的局域和樂群不一定具有相同的維數。然而,有以下的定理:

  • 若局域和樂群的維數恆定,則局域和樂群與受限和樂群相等,即

詞源

英文 Holonomy 與「全純」(英語:) 相似,"Holomorphic"一詞由柯西的兩個學生夏爾·布里奧 (18171882)和讓-克勞迪·波桂(18191895)引入,來自希臘文 ὅλος ("holos"), 意思是「全」和 μορφή (morphē), 意思是「形態」。[4]

"Holonomy" 與 "holomorphic" 的前半 (holos) 一樣。至於後半:

「非常難在網絡上找出 holonomic(或 holonomy) 的詞源。我找到(鳴謝普林斯頓約翰·康威):


我相信潘索 (Louis Poinsot) 最早在他對剛體運動的分析用到它。這個理論中,若果某種意義下,能夠從一個系統的局域資訊得悉其全局資訊,就叫一個和樂的 ("holonomic") 系統,所以它的意思「整體法則」("entire-law") 很貼切。球在桌上滾動不是和樂的,因為沿不同的路徑滾到同一點,可以使球的方向不同。然而,將「和樂」理解成「整體法則」恐怕有點過於簡化。希臘文的 "nom" 詞根有很多互相交織的意思,可能更多時解「數算」("counting")。它與我們的詞數字 ("number") 來自同一個印歐詞根。』」

——S. Golwala,[5]

參見 νόμος (nomos) 和 -nomy

黎曼和樂

伯格分类

Hol(g) 维(M) 类型 评论
SO(n) n 可定向性
U(n) 2n 凯勒流形 凯勒
SU(n) 2n 卡拉比–丘流形 里奇平,凯勒
Sp(n)·Sp(1) 4n 四元 卡拉比–丘流形 爱因斯坦 流形
Sp(n) 4n Hyperkähler流形 里奇平,凯勒
G<sub id="mwAkA">2</sub> 7 G2 流形 里奇平
旋(7) 8 旋(7)流形 里奇平

参见

脚注

  1. Wu, Hongxi. . DSpace@MIT. [2020-02-18]. (原始内容存档于2020-02-18).
  2. Kobayashi & Nomizu 1963,§II.7
  3. Sharpe 1997,§3.7
  4. Markushevich, A.I. 2005
  5. Golwala 2007

参考文献

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.