邏輯迴歸
羅吉斯迴歸(英語:,又譯作对数几率迴归、羅吉斯迴歸)是一種对数几率模型(英語:,又译作逻辑模型、评定模型、分类评定模型)是离散选择法模型之一,属于多重变量分析范畴,是社会学、生物统计学、临床、数量心理学、计量经济学、市场营销等统计实证分析的常用方法。
统计学系列条目 |
迴歸分析 |
---|
模型 |
|
|
估计 |
|
背景 |
|
对数几率分布公式
其中参数常用最大似然估計。
IIA假设
全名為Independent and irrelevant alternatives假设,也称作IIA效应,指Logit模型中的各个可选项是独立的。
IIA假设示例
市场上有A,B,C三个商品相互竞争,分别占有市场份额:60%,30%和10%,三者比例为:6:3:1
一个新产品D引入市场,有能力占有20%的市场——
如果满足IIA假设,各个产品独立作用,互不关联:新产品D占有20%的市场份额,剩下的80%在A、B、C之间按照6:3:1的比例瓜分,分别占有48%,24%和8%。
如果不满足IIA假设,比如新产品D跟产品B相似度高,则新产品D的CP值高而夺去产品B的部分市场(总份额的20%),則产品B剩余10%,而产品A和C的市场份额保持60%和10%不变。
Hausman检验
傑里·A·奧斯曼和丹尼爾·麥克法登提出的。
一般化极值模型
可以将可选项间的相关性建模
巢式Logit模型
巢式(Nested)表示可选项被分作不同的组,组与组之间不相关,组内的可选项相关,相关程度用1-λg来表示(1-λg越大,相关程度越高)
二类评定模型(Binary Logit Model)
- 仅有两个可选项:V1n,V2n
变量类型 |
统计量 |
组别比较 |
回归模型 |
---|---|---|---|
numerical |
mean |
t-test/ANOVA |
线性回归 |
categorical |
percentage |
Chi-square test |
逻辑回归 |
persontime |
KM estimates (survival curves) |
Log-rank test |
比例风险回归 |
参考书目
- Agresti, Alan: Categorical Data Analysis. New York: Wiley, 1990.
- Amemiya, T., 1985, Advanced Econometrics,Harvard University Press.
- Hosmer, D. W. and S. Lemeshow: Applied logistic regression. New York; Chichester, Wiley, 2000.
参见
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.