子集
定义
假设有和两个集合,如果中的每个元素都是的元素,则:
- 是的 子集,记作
- 也可以说
- 是的 超集,记作
如果是的子集,但不等于(即中至少存在一个元素不在集合中),则:
- 是的 真子集,记作
- 也可以说
- 是 的 真超集,记作
符号
符号表示任何子集关系,符号表示真子集关系。也是一个很常見的符号,但其含义容易混淆。
有人用和表示任何子集和超集关系,即和所分别代表的含义。[1][2][3]所以在这些作者的文章中,对于任意集合, 始终成立。
也有人用和表示真子集和真超集的概念,即和所分别代表的含义。[4]:p.6这样和就类似于不等符号和的关系。例如如果 ,那么可能等于也可能不等于,而如果 ,那么就一定不等于。换用表示真子集,如果 ,那么可能等于也可能不等于,而如果 ,那么就一定不等于。
ISO 80000-2 标准中定义了两种符号搭配:使用表示子集关系,表示真子集关系;或者使用表示子集关系,使用表示真子集关系。
举例
性质
命题1:空集是任意集合的子集。
这个命题说明:包含是一种偏序关系。
命题2:若是集合,则:
- 自反性:
- 传递性:
- 若且则
这个命题说明:对任意集合,的幂集按包含排序是一个有界格,与上述命题相结合,则它是一个布尔代数。
命题3:若是集合的子集,则:
- 存在并运算:
- 若且则
- 存在交运算:
- 若且则
命题4:对任意两个集合和,下列表述等价:
參考文獻
- , [2012-09-07], (原始内容存档于2012-07-03)
- (PDF), [2012-09-07], (原始内容 (PDF)存档于2013-01-23)
- (PDF), [2015-03-14]
- Rudin, Walter, 3rd, New York: McGraw-Hill, 1987, ISBN 978-0-07-054234-1, MR 924157
参见
- 冪集:某集合的全部子集组成的集合。
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.