S函数
乙狀函數是一種函數。Sigmoid函数得名因其形状像S字母。其形狀曲線至少有二個焦點,大概也叫“二焦點曲線函數”。

S函數的曲線圖形

S函數在複數域的分布圖形
一种常见的S函数是逻辑函数:
其级数展开为:
常見的S函數
.svg.png.webp)
一些S函數的比較,圖中的函數皆以原點斜率為1的方式歸一化。
- 廣義邏輯函數
- 平滑階躍函數
- 一些代數函數, 例如
所有連續非負的凸形函數的積分都是S函數,因此許多常見概率分布的累积分布函数會是S函數。一個常見的例子是误差函数,它是正态分布的累积分布函数。
参考资料
- Mitchell, Tom M. . WCB–McGraw–Hill. 1997. ISBN 0-07-042807-7.. In particular see "Chapter 4: Artificial Neural Networks" (in particular pp. 96–97) where Mitchell uses the word "logistic function" and the "sigmoid function" synonymously – this function he also calls the "squashing function" – and the sigmoid (aka logistic) function is used to compress the outputs of the "neurons" in multi-layer neural nets.
- Humphrys, Mark. . [2015-02-01]. (原始内容存档于2015-02-02). Properties of the sigmoid, including how it can shift along axes and how its domain may be transformed.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.