分配律

分配律(distributive property)二元运算的一个性质,它起源于基本代数运算,同时部分抽象代数运算亦符合该定律

定義

是定义在集合上的兩個二元運算,我們說

  • 对于满足左分配律,如果:
;
  • 对于满足右分配律,如果:
;
  • 如果对于同時满足左分配律和右分配律,那么我們說对于满足分配律。

如果满足交换律,那么以上三条语句在邏輯上是等价的。

例子

  • 对于实数,加法对最大值满足分配律,对最小值也满足分配律:

环的分配律

分配律在分配格中很常见。

一个环有两个二元运算(通常称为),其中一个要求是必须对满足分配律。

是另外一种具有两个二元运算代数结构。如果这两个运算中的任何一个(例如)对另外一个()满足分配律,则也一定满足分配律,这时这个格便称为分配格。

參見

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.