有理数

数学上,可以表达为两个整数比的数(, )被定义为有理数,例如,0.75(可被表达为)。整数和分数统称为有理数。与有理数对应的是无理数,如无法用整数比表示。
有理数与分數形式的区别,分數形式是一种表示比值的记法,如 分數形式无理数
所有有理数的集合表示为Q,Q+,或。定义如下:

基本

正數
自然数
正整數
小数
有限小数
无限小数
循环小数
有理数
代數數
实数
複數
高斯整數

负数
整数
负整數
分數
單位分數
二进分数
規矩數
無理數
超越數
虚数
二次无理数
艾森斯坦整数

延伸

二元数
四元數
八元數
十六元數
超實數
大實數
上超實數

雙曲複數
雙複數
複四元數
共四元數
超复数
超數
超現實數

其他

質數
可計算數
基數
阿列夫數
同餘
整數數列
公稱值

規矩數
可定義數
序数
超限数
p進數
數學常數

圓周率
自然對數的底
虛數單位
無窮大

實數(ℝ)包括有理數(ℚ),其中包括整數(ℤ),其中包括自然數(ℕ)

有理数的小数部分有限或为循环。不是有理數的實數遂稱為無理數

词源

有理数在英文中称作rational number,来自拉丁语rationalis,意为理性的;词根ratio,拉丁语意为理性、计算,而非英语之“比例”一词。[1]

运算

有理数集对加、减、乘、除四则运算是封闭的,亦即有理數加、减、乘、除有理數的結果仍為有理數。有理数的加法和乘法如下:

两个有理数相等当且仅当

有理数中存在加法和乘法的逆:

时,

古埃及分数

古埃及分数是分子为1、分母为正整数的有理数。每个有理数都可以表达为有限个两两不等的古埃及分数的和。例如:

对于给定的正有理数,存在无穷多种表达成有限个两两不等的古埃及分数之和的方法。

形式构建

数学上可以将有理数定义为建立在整数有序对等价类,这里不为零。我们可以对这些有序对定义加法和乘法,规则如下:

为了使,定义等价关系如下:

这种等价关系与上述定义的加法和乘法上是一致的,而且可以将Q定义为整数有序对关于等价关系~的商集。例如:两个对是相同的,如果它们满足上述等式。(这种构建可用于任何整数环,参见商域。)

Q上的全序关系可以定义为:

当且仅当
  1. 并且
  2. 并且

性质

有理数集是可数的

集合,以及上述的加法和乘法运算,构成,即整数商域

有理数是特征为0的域最小的一个:所有其他特征为0的域都包含的一个拷贝(即存在一个从到其中的同构映射)。

代数闭包,例如有理数多项式的根的域,是代数数域

所有有理数的集合是可数的,亦即是說基數(或)與自然數集合相同,都是阿列夫數,這是因為可以定義一個從有理數集映至自然數集合的笛卡爾積 單射函數,而是可數集合之故。因为所有实数的集合是不可数的,所以从勒贝格测度来看,可以认为绝大多数实数不是有理数。

有理数是个稠密的集合:任何两个有理数之间存在另一个有理数,事实上是存在无穷多个。

实数

有理数是实数的紧密子集:每个实数都有任意接近的有理数。一个相关的性质是,僅有理数可化為有限连分数

依照它们的序列,有理数具有一个序拓扑。有理数是实数的(稠密子集,因此它同时具有一个子空间拓扑。采用度量,有理数构成一个度量空间,这是上的第三个拓扑。幸运的是,所有三个拓扑一致并将有理数转化到一个拓扑域。有理数是非局部紧致空间的一个重要的实例。这个空间也是完全不连通的。有理数不构成完备的度量空间实数的完备集。

p进数

除了上述的绝对值度量,还有其他的度量将转化到拓扑域:

素数,对任何非零整数,这里整除的最高次幂;

另外。对任何有理数,设

上定义了一个度量

度量空间不完备,它的完备集是p进数

参见

  1. . asait.world.coocan.jp.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.