随机森林

機器學習中,隨機森林是一個包含多個決策樹分類器,並且其輸出的類別是由個別樹輸出的類別的眾數而定。

這個術語是1995年[1]貝爾實驗室何天琴所提出的隨機決策森林random decision forests)而來的。[2][3]

然后Leo BreimanAdele Cutler發展出推論出隨機森林的演算法。而"Random Forests"是他們的商標

這個方法則是結合Breimans的"Bootstrap aggregating"想法和Ho的"random subspace method"以建造決策樹的集合。

历史

随机森林的引入最初是由华裔美国人何天琴于1995年[1]先提出的。[2]然后随机森林由Leo Breiman于2001年在一篇论文中提出的。[4]这篇文章描述了一种结合随机节点优化和bagging,利用类CART过程构建不相关树的森林的方法。此外,本文还结合了一些已知的、新颖的、构成了现代随机森林实践的基础成分,特别是

  1. 使用out-of-bag误差来代替泛化误差
  2. 通过排列度量变量的重要性

算法

预备:决策树学习

决策树是各种机器学习任务的常用方法。 Hastie等说:“树学习是如今最能满足于数据挖掘的方法,因为它在特征值的缩放和其他各种转换下保持不变,对无关特征是鲁棒的,而且能生成可被检查的模型。然而,它通常并不准确。”[5]

特别的,生长很深的树容易学习到高度不规则的模式,即过学习,在训练集上具有低偏差和高方差的特点。随机森林是平均多个深决策树以降低方差的一种方法,其中,决策树是在一个数据集上的不同部分进行训练的。[5]这是以偏差的小幅增加和一些可解释性的丧失为代价的,但是在最终的模型中通常会大大提高性能。

Bagging

随机森林训练算法把bagging的一般技术应用到树学习中。给定训练集X = x1, ..., xn和目标Y = y1, ..., yn,bagging方法重复(B次)从训练集中有放回地采样,然后在这些样本上训练树模型:

For b = 1, ..., B:
  1. Sample, with replacement, n training examples from X, Y; call these Xb, Yb.
  2. Train a classification or regression tree fb on Xb, Yb.

在训练结束之后,对未知样本x的预测可以通过对x上所有单个回归树的预测求平均来实现:

或者在分类任务中选择多数投票的类别。

这种bagging方法在不增加偏置的情况下降低了方差,从而带来了更好的性能。这意味着,即使单个树模型的预测对训练基的噪声非常敏感,但对于多个树模型,只要这些树并不相关,这种情况就不会出现。简单地在同一个数据集上训练多个树模型会产生强相关的树模型(甚至是完全相同的树模型)。Bootstrap抽样是一种通过产生不同训练集从而降低树模型之间关联性的方法。

此外,x'上所有单个回归树的预测的标准差可以作为预测的不确定性的估计:

样本或者树的数量B是一个自由参数。通常使用几百到几千棵树,这取决于训练集的大小和性质。使用交叉验证,或者通过观察out-of-bag误差(那些不包含xᵢ的抽样集合在样本xᵢ的平均预测误差),可以找到最优的B值。当一些树训练到一定程度之后,训练集和测试集的误差开始趋于平稳。

从 bagging 到随机森林

上面的过程描述了树的原始的 bagging 算法。随机森林与这个通用的方案只有一点不同:它使用一种改进的学习算法,在学习过程中的每次候选分裂中选择特征的随机子集。这个过程有时又被称为“特征 bagging”。这样做的原因是 bootstrap 抽样导致的树的相关性:如果有一些特征预测目标值的能力很强,那么这些特征就会被许多树所选择,这样就会导致树的强相关性。何天琴分析了不同条件下 bagging 和随机子空间投影对精度提高的影响。[3]

典型地,对于一个包含 p 个特征的分类问题,可以在每次划分时使用 个特征[5]:592。对于回归问题,作者推荐 p/3 但不少于 5 个特征[5]:592

极限树

再加上一个随机化步骤,就会得到极限随机树extremely randomized trees),即极限树。与普通的随机森林相同,他们都是单个树的集成,但也有不同:首先,每棵树都使用整个学习样本进行了训练,其次,自上而下的划分是随机的。它并不计算每个特征的最优划分点(例如,基于信息熵或者基尼不纯度),而是随机选择划分点。该值是从特征经验范围内均匀随机选取的。在所有随机的划分点中,选择其中分数最高的作为结点的划分点。与普通的随机森林相似,可以指定每个节点要选择的特征的个数。该参数的默认值,对于分类问题,是,对于回归问题,是,其中 是模型的特征个数。[6]

性质

特征的重要性

随机森林天然可用来对回归或分类问题中变量的重要性进行排序。下面的技术来自Breiman的论文,R语言包randomForest包含它的实现。[7]

度量数据集 的特征重要性的第一步是,使用训练集训练一个随机森林模型。在训练过程中记录下每个数据点的out-of-bag误差,然后在整个森林上进行平均。

为了度量第个特征的重要性,第个特征的值在训练数据中被打乱,并重新计算打乱后的数据的out-of-bag误差。则第个特征的重要性分数可以通过计算打乱前后的out-of-bag误差的差值的平均来得到,这个分数通过计算这些差值的标准差进行标准化。

产生更大分数的特征比小分数的特征更重要。这种特征重要性的度量方法的统计定义由Zhu et al.[8]给出。

这种度量方法也有一些缺陷。对于包含不同取值个数的类别特征,随机森林更偏向于那些取值个数较多的特征,partial permutations[9][10]、growing unbiased trees[11][12]可以用来解决这个问题。如果数据包含一些相互关联的特征组,那么更小的组更容易被选择。[13]

与最近邻算法的关系

Lin和Jeon在2002年指出了随机森林算法和K-近邻算法(k-NN)的关系。[14] 事实证明,这两种算法都可以被看作是所谓的“加权邻居的方案”。这些在数据集上训练的模型通过查看一个点的邻居来计算一个新点x'的预测值,并且使用权重函数W对这些邻居进行加权:

其中, 是第i个点在同一棵树中相对于新的数据点x'的非负权重。对于任一特定的点x'的权重的和必须为1。权重函数设定如下:

  • 对于k-NN算法,如果xi是距离x'最近的k个点之一,则,否则为0。
  • 对于树,如果xix'属于同一个包含k'个点的叶结点,则,否则为0。

因为森林平均了m棵树的预测,且这些树具有独立的权重函数,故森林的预测值是:

上式表明了整个森林也采用了加权的邻居方案,其中的权重是各个树的平均。在这里,x'的邻居是那些在任一树中属于同一个叶节点的点。只要x'在某棵树中属于同一个叶节点,就是x'的邻居。

基于随机森林的非监督学习

作为构建的一部分,随机森林预测器自然会导致观测值之间的不相似性度量。还可以定义未标记数据之间的随机森林差异度量:其思想是构造一个随机森林预测器,将“观测”数据与适当生成的合成数据区分开来。[15][16] 观察到的数据是原始的未标记数据,合成数据是从参考分布中提取的。随机森林的不相似性度量之所以吸引人,是因为它能很好地处理混合变量类型,对输入变量的单调变换是不敏感的,而且在存在异常值的情况下度量结果依然可靠。由于其固有变量的选择,随机森林不相似性很容易处理大量的半连续变量。

學習演算法

根據下列演算法而建造每棵樹:

  1. N來表示訓練用例(样本)的個數,M表示特征数目。
  2. 输入特征数目m,用于确定决策树上一个节点的决策结果;其中m應远小於M
  3. N個訓練用例(样本)中以有放回抽样的方式,取樣N次,形成一个训练集(即bootstrap取樣),並用未抽到的用例(样本)作預測,評估其誤差。
  4. 對於每一個節點,隨機選擇m個特征,决策树上每个节点的决定都是基于这些特征确定的。根據這m個特征,計算其最佳的分裂方式。
  5. 每棵樹都會完整成長而不會剪枝(Pruning,這有可能在建完一棵正常樹狀分類器後會被採用)。

優點

隨機森林的優點有:

  • 對於很多種資料,它可以產生高準確度的分類器。
  • 它可以處理大量的輸入變數。
  • 它可以在決定類別時,評估變數的重要性。
  • 在建造森林時,它可以在內部對於一般化後的誤差產生不偏差的估計。
  • 它包含一個好方法可以估計遺失的資料,並且,如果有很大一部分的資料遺失,仍可以維持準確度。
  • 它提供一個實驗方法,可以去偵測variable interactions。
  • 對於不平衡的分類資料集來說,它可以平衡誤差。
  • 它計算各例中的親近度,對於数据挖掘、偵測離群點(outlier)和將資料視覺化非常有用。
  • 使用上述。它可被延伸應用在未標記的資料上,這類資料通常是使用非監督式聚類。也可偵測偏離者和觀看資料。
  • 學習過程是很快速的。

开源实现

  • The Original RF by Breiman and Cutler written in Fortran 77.
  • ALGLIB contains a modification of the random forest in C#, C++, Pascal, VBA.
  • party Implementation based on the conditional inference trees in R.
  • randomForest for classification and regression in R.
  • Python implementation with examples in scikit-learn.
  • Orange data mining suite includes random forest learner and can visualize the trained forest.
  • Matlab implementation.
  • SQP software uses random forest algorithm to predict the quality of survey questions, depending on formal and linguistic characteristics of the question.
  • Weka RandomForest in Java library and GUI.
  • ranger A C++ implementation of random forest for classification, regression, probability and survival. Includes interface for R.

外部連結

参考文献

  1. Tin Kam Ho. . Proceedings of 3rd International Conference on Document Analysis and Recognition (Montreal, Que., Canada: IEEE Comput. Soc. Press). 1995, 1: 278–282. ISBN 978-0-8186-7128-9. doi:10.1109/ICDAR.1995.598994.
  2. Tin Kam Ho. . IEEE Transactions on Pattern Analysis and Machine Intelligence. Aug./1998, 20 (8): 832–844. doi:10.1109/34.709601.
  3. Ho, Tin Kam. (PDF). Pattern Analysis and Applications. 2002: 102–112 [2019-02-16]. (原始内容 (PDF)存档于2016-04-17).
  4. RandomForest2001
  5. Template:ElemStatLearn
  6. Geurts P, Ernst D, Wehenkel L. (PDF). Machine Learning. 2006, 63: 3–42. doi:10.1007/s10994-006-6226-1.
  7. Liaw A. (PDF). 16 October 2012 [15 March 2013].
  8. Zhu R, Zeng D, Kosorok MR. . Journal of the American Statistical Association. 2015, 110 (512): 1770–1784. PMC 4760114. PMID 26903687. doi:10.1080/01621459.2015.1036994.
  9. Deng,H.; Runger, G.; Tuv, E. (PDF). Proceedings of the 21st International Conference on Artificial Neural Networks (ICANN): 293–300. 2011.
  10. Altmann A, Toloşi L, Sander O, Lengauer T. . Bioinformatics. May 2010, 26 (10): 1340–7. PMID 20385727. doi:10.1093/bioinformatics/btq134.
  11. Strobl C, Boulesteix AL, Augustin T. (PDF). Computational Statistics & Data Analysis. 2007: 483–501.
  12. Painsky A, Rosset S. . IEEE Transactions on Pattern Analysis and Machine Intelligence. 2017, 39 (11): 2142–2153. PMID 28114007. arXiv:1512.03444. doi:10.1109/tpami.2016.2636831.
  13. Tolosi L, Lengauer T. . Bioinformatics. July 2011, 27 (14): 1986–94. PMID 21576180. doi:10.1093/bioinformatics/btr300.
  14. Lin, Yi; Jeon, Yongho. (Technical report). Technical Report No. 1055. University of Wisconsin. 2002 [2019-02-16]. (原始内容存档于2013-06-30).
  15. RandomForest2001
  16. Shi, T., Horvath, S. . Journal of Computational and Graphical Statistics. 2006, 15 (1): 118–138  . JSTOR 27594168. doi:10.1198/106186006X94072. 已忽略未知参数|citeseerx= (帮助)
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.