高斯整數

高斯整數實數虛數部分都是整數複數。所有高斯整數組成了一個整域,寫作,是個不可以轉成有序環欧几里得整环

高斯整數是複數面上的整點。
基本

正數
自然数
正整數
小数
有限小数
无限小数
循环小数
有理数
代數數
实数
複數
高斯整數

负数
整数
负整數
分數
單位分數
二进分数
規矩數
無理數
超越數
虚数
二次无理数
艾森斯坦整数

延伸

二元数
四元數
八元數
十六元數
超實數
大實數
上超實數

雙曲複數
雙複數
複四元數
共四元數
超复数
超數
超現實數

其他

質數
可計算數
基數
阿列夫數
同餘
整數數列
公稱值

規矩數
可定義數
序数
超限数
p進數
數學常數

圓周率
自然對數的底
虛數單位
無窮大

高斯整數的范数都是非負整數,定義為

單位元的範數均為

作为唯一分解整环

高斯整数形成了一个唯一分解整环,其可逆元

素元素又称为高斯素数

高斯整数是素数当且仅当

  • 中有一个是零,另一个是形为或其相反数的素数

  • 均不为零,而为素数。
高斯素数的分布

以下给出这些条件的证明。

必要条件的证明为:仅当高斯整数的范数是素数,或素数的平方时,它才是高斯素数。这是因为对于任何高斯整数。现在,是整数,因此根据算术基本定理,它可以分解为素数的乘积。根据素数的定义,如果是素数,则它可以整除,对于某个。另外,可以整除,因此。于是现在只有两种选择:要么的范数是素数,要么是素数的平方。

如果实际上对于某个素数,有,那么都能整除。它们都不能是可逆元,因此,以及,其中是可逆元。这就是说,要么,要么,其中

然而,不是每一个素数都是高斯素数。就不是高斯素数,因为。高斯素数不能是的形式,因为根据费马平方和定理,它们可以写成的形式,其中是整数,且。剩下的就只有形为的素数了。

形为的素数也是高斯素数。假设,其中是素数,且可以分解为。那么。如果这个分解是非平凡的,那么。但是,任何两个平方数的和都不能写成的形式。因此分解一定是平凡的,所以是高斯素数。

类似地,乘以一个形为的素数也是高斯素数,但乘以形为的素数则不是。

如果是范数为素数的高斯整数,那么是高斯素数。这是因为如果,那么。由于是素数,因此一定是1,所以一定是可逆元。

作为整闭包

高斯整数环是高斯有理数中的整闭包,由实数部分和虚数部分都是有理数的复数组成。

作为欧几里德环

在图中很容易看到,每一个复数与最近的高斯整数的距离最多为个单位。因此,是一个欧几里德环,其中

未解决的问题

高斯圆问题是中心为原点、半径为给定值的圆内有多少格点的问题。它本身并不是关于高斯整数的,但等价于确定范数小于某个给定值的高斯整数的数目。

关于高斯整数,还有一些猜想和未解决的问题,例如:

实数轴和虚数轴含有无穷多个高斯素数。在复平面上,还存在任何其它的直线上有无穷多个高斯素数吗?特别地,实数部分为的直线上存在无穷多个高斯素数吗?

在高斯素数上行走,步伐小于某个给定的值,可以走到无穷远吗?

參見

参考文献

  • C. F. Gauss, Theoria residuorum biquadraticorum. Commentatio secunda., Comm. Soc. Reg. Sci. Gottingen 7 (1832) 1-­34; reprinted in Werke, Georg Olms Verlag, Hildesheim, 1973, pp. 93-­148.
  • 从数到环:环论的早期历史,由Israel Kleiner所作 (Elem. Math. 53 (1998) 18 – 35)
  • Ribenboim, Paulo, , New York: Springer, 1996, ISBN 0-387-94457-5
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.