質數列表
首五百個質數
以下共有二十五行,二十列,每行二十個連續質數。
2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 | 61 | 67 | 71 |
73 | 79 | 83 | 89 | 97 | 101 | 103 | 107 | 109 | 113 | 127 | 131 | 137 | 139 | 149 | 151 | 157 | 163 | 167 | 173 |
179 | 181 | 191 | 193 | 197 | 199 | 211 | 223 | 227 | 229 | 233 | 239 | 241 | 251 | 257 | 263 | 269 | 271 | 277 | 281 |
283 | 293 | 307 | 311 | 313 | 317 | 331 | 337 | 347 | 349 | 353 | 359 | 367 | 373 | 379 | 383 | 389 | 397 | 401 | 409 |
419 | 421 | 431 | 433 | 439 | 443 | 449 | 457 | 461 | 463 | 467 | 479 | 487 | 491 | 499 | 503 | 509 | 521 | 523 | 541 |
547 | 557 | 563 | 569 | 571 | 577 | 587 | 593 | 599 | 601 | 607 | 613 | 617 | 619 | 631 | 641 | 643 | 647 | 653 | 659 |
661 | 673 | 677 | 683 | 691 | 701 | 709 | 719 | 727 | 733 | 739 | 743 | 751 | 757 | 761 | 769 | 773 | 787 | 797 | 809 |
811 | 821 | 823 | 827 | 829 | 839 | 853 | 857 | 859 | 863 | 877 | 881 | 883 | 887 | 907 | 911 | 919 | 929 | 937 | 941 |
947 | 953 | 967 | 971 | 977 | 983 | 991 | 997 | 1009 | 1013 | 1019 | 1021 | 1031 | 1033 | 1039 | 1049 | 1051 | 1061 | 1063 | 1069 |
1087 | 1091 | 1093 | 1097 | 1103 | 1109 | 1117 | 1123 | 1129 | 1151 | 1153 | 1163 | 1171 | 1181 | 1187 | 1193 | 1201 | 1213 | 1217 | 1223 |
1229 | 1231 | 1237 | 1249 | 1259 | 1277 | 1279 | 1283 | 1289 | 1291 | 1297 | 1301 | 1303 | 1307 | 1319 | 1321 | 1327 | 1361 | 1367 | 1373 |
1381 | 1399 | 1409 | 1423 | 1427 | 1429 | 1433 | 1439 | 1447 | 1451 | 1453 | 1459 | 1471 | 1481 | 1483 | 1487 | 1489 | 1493 | 1499 | 1511 |
1523 | 1531 | 1543 | 1549 | 1553 | 1559 | 1567 | 1571 | 1579 | 1583 | 1597 | 1601 | 1607 | 1609 | 1613 | 1619 | 1621 | 1627 | 1637 | 1657 |
1663 | 1667 | 1669 | 1693 | 1697 | 1699 | 1709 | 1721 | 1723 | 1733 | 1741 | 1747 | 1753 | 1759 | 1777 | 1783 | 1787 | 1789 | 1801 | 1811 |
1823 | 1831 | 1847 | 1861 | 1867 | 1871 | 1873 | 1877 | 1879 | 1889 | 1901 | 1907 | 1913 | 1931 | 1933 | 1949 | 1951 | 1973 | 1979 | 1987 |
1993 | 1997 | 1999 | 2003 | 2011 | 2017 | 2027 | 2029 | 2039 | 2053 | 2063 | 2069 | 2081 | 2083 | 2087 | 2089 | 2099 | 2111 | 2113 | 2129 |
2131 | 2137 | 2141 | 2143 | 2153 | 2161 | 2179 | 2203 | 2207 | 2213 | 2221 | 2237 | 2239 | 2243 | 2251 | 2267 | 2269 | 2273 | 2281 | 2287 |
2293 | 2297 | 2309 | 2311 | 2333 | 2339 | 2341 | 2347 | 2351 | 2357 | 2371 | 2377 | 2381 | 2383 | 2389 | 2393 | 2399 | 2411 | 2417 | 2423 |
2437 | 2441 | 2447 | 2459 | 2467 | 2473 | 2477 | 2503 | 2521 | 2531 | 2539 | 2543 | 2549 | 2551 | 2557 | 2579 | 2591 | 2593 | 2609 | 2617 |
2621 | 2633 | 2647 | 2657 | 2659 | 2663 | 2671 | 2677 | 2683 | 2687 | 2689 | 2693 | 2699 | 2707 | 2711 | 2713 | 2719 | 2729 | 2731 | 2741 |
2749 | 2753 | 2767 | 2777 | 2789 | 2791 | 2797 | 2801 | 2803 | 2819 | 2833 | 2837 | 2843 | 2851 | 2857 | 2861 | 2879 | 2887 | 2897 | 2903 |
2909 | 2917 | 2927 | 2939 | 2953 | 2957 | 2963 | 2969 | 2971 | 2999 | 3001 | 3011 | 3019 | 3023 | 3037 | 3041 | 3049 | 3061 | 3067 | 3079 |
3083 | 3089 | 3109 | 3119 | 3121 | 3137 | 3163 | 3167 | 3169 | 3181 | 3187 | 3191 | 3203 | 3209 | 3217 | 3221 | 3229 | 3251 | 3253 | 3257 |
3259 | 3271 | 3299 | 3301 | 3307 | 3313 | 3319 | 3323 | 3329 | 3331 | 3343 | 3347 | 3359 | 3361 | 3371 | 3373 | 3389 | 3391 | 3407 | 3413 |
3433 | 3449 | 3457 | 3461 | 3463 | 3467 | 3469 | 3491 | 3499 | 3511 | 3517 | 3527 | 3529 | 3533 | 3539 | 3541 | 3547 | 3557 | 3559 | 3571 |
......
在哥德巴赫猜想證明研究報告中聲稱可用來計出1018之下的所有質數,[1] 共24,739,954,287,740,860個,但並沒有儲存下來。 世上有著名的公式可計算出質數計數函數,即是比某一個已知值小的質數總數。 現在已成功用電腦計算出在1023之下估計有1,925,320,391,606,803,968,923個質數。
質數分類
以下將出不同種類和形式的質數中最初的一些例子。詳細內容可參照各主條目。根據定義,我們假設之後的n都是自然數(包括0)。
平衡質數
每一個質數都是它的前一個質數和後一質數相加後的平均值。
5, 53, 157, 173, 211, 257, 263, 373, 563, 593, 607, 653, 733, 947, 977, 1103, 1123, 1187, 1223, 1367, 1511, 1747, 1753, 1907, 2287, 2417, 2677, 2903, 2963, 3307, 3313, 3637, 3733, 4013, 4409, 4457, 4597, 4657, 4691, 4993, 5107, 5113, 5303, 5387, 5393 (A006562)
貝爾質數(又名 Bell 質數)
每一個質數都是集合劃分之中的質數而數位有n個位值。
2, 5, 877, 27644437, 35742549198872617291353508656626642567, 359334085968622831041960188598043661065388726959079837.
下一個質數將有 6539 位數. (A051131)
卡羅爾質數
每一個質數皆符合 的數式表達。
7, 47, 223, 3967, 16127, 1046527, 16769023, 1073676287, 68718952447, 274876858367, 4398042316799, 1125899839733759, 18014398241046527, 1298074214633706835075030044377087 (A091516)
中心十邊形質數
每一個質數皆符合 的數式。
11, 31, 61, 101, 151, 211, 281, 661, 911, 1051, 1201, 1361, 1531, 1901, 2311, 2531, 3001, 3251, 3511, 4651, 5281, 6301, 6661, 7411, 9461, 9901, 12251, 13781, 14851, 15401, 18301, 18911, 19531, 20161, 22111, 24151, 24851, 25561, 27011, 27751 (A090562)
中心七邊形質數
每一個質數皆符合 (7n2 − 7n + 2) / 2.的數式。
43, 71, 197, 463, 547, 953, 1471, 1933, 2647, 2843, 3697, 4663, 5741, 8233, 9283, 10781, 11173, 12391, 14561, 18397, 20483, 29303, 29947, 34651, 37493, 41203, 46691, 50821, 54251, 56897, 57793, 65213, 68111, 72073, 76147, 84631, 89041, 93563 (primes in A069099)
中心六邊形質數
每一個質數皆符合 的數式。
7, 19, 37, 61, 127, 271, 331, 397, 547, 631, 919, 1657, 1801, 1951, 2269, 2437, 2791, 3169, 3571, 4219, 4447, 5167, 5419, 6211, 7057, 7351, 8269, 9241, 10267, 11719, 12097, 13267, 13669, 16651, 19441, 19927, 22447, 23497, 24571, 25117, 26227, 27361, 33391, 35317 (A002407)
中心五邊形質數
每一個質數皆符合 (5n2 − 5n + 2) / 2.的數式。
31, 181, 331, 601, 1051, 1381, 3331, 4951, 5641, 5881, 9151, 11731, 12781, 14251, 17431, 17851, 19141, 21391, 31081, 33931, 41281, 43891, 51481, 52201, 61231, 63601, 67651, 70141, 70981, 84181, 92641, 100501, 104551, 107641, 116101, 126001 (primes in A145838)
中心正方形質數
每一個質數皆符合 的數式表達。
5, 13, 41, 61, 113, 181, 313, 421, 613, 761, 1013, 1201, 1301, 1741, 1861, 2113, 2381, 2521, 3121, 3613, 4513, 5101, 7321, 8581, 9661, 9941, 10513, 12641, 13613, 14281, 14621, 15313, 16381, 19013, 19801, 20201, 21013, 21841, 23981, 24421, 26681 (A027862)
中心三角形質數
每一個質數皆符合 (3n2 + 3n + 2) / 2的數式表達。
19, 31, 109, 199, 409, 571, 631, 829, 1489, 1999, 2341, 2971, 3529, 4621, 4789, 7039, 7669, 8779, 9721, 10459, 10711, 13681, 14851, 16069, 16381, 17659, 20011, 20359, 23251, 25939, 27541, 29191, 29611, 31321, 34429, 36739, 40099, 40591, 42589 (A125602)
陳質數
假設p是一個質數,那麼p+2是一個質數或兩個質數的積(半質數)。
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 47, 53, 59, 67, 71, 83, 89, 101, 107, 109, 113, 127, 131, 137, 139, 149, 157, 167, 179, 181, 191, 197, 199, 211, 227, 233, 239, 251, 257, 263, 269, 281, 293, 307, 311, 317, 337, 347, 353, 359, 379, 389, 401, 409 (A109611)
表兄弟素数
這是以對的形式存在的質數,(p, p + 4)皆是質數。
(3, 7), (7, 11), (13, 17), (19, 23), (37, 41), (43, 47), (67, 71), (79, 83), (97, 101), (103, 107), (109, 113), (127, 131), (163, 167), (193, 197), (223, 227), (229, 233), (277, 281) (A023200, A046132)
立方質數
每一個質數皆符合或的數式,這類質數都是中心六邊形數。
7, 19, 37, 61, 127, 271, 331, 397, 547, 631, 919, 1657, 1801, 1951, 2269, 2437, 2791, 3169, 3571, 4219, 4447, 5167, 5419, 6211, 7057, 7351, 8269, 9241, 10267, 11719, 12097, 13267, 13669, 16651, 19441, 19927, 22447, 23497, 24571, 25117, 26227, 27361, 33391, 35317 (A002407)
每一個質數皆符合或的數式。
13, 109, 193, 433, 769, 1201, 1453, 2029, 3469, 3889, 4801, 10093, 12289, 13873, 18253, 20173, 21169, 22189, 28813, 37633, 43201, 47629, 60493, 63949, 65713, 69313, 73009, 76801, 84673, 106033, 108301, 112909, 115249 (A002648)
卡倫質數
每一個質數皆符合 n · 2n + 1的數式。
3, 393050634124102232869567034555427371542904833,下一個質數將有 1423 數字 (A050920)
二面質數
這些質數在上下倒置或以七段顯示器鏡像後仍是質數。
2, 5, 11, 101, 181, 1181, 1811, 18181, 108881, 110881, 118081, 120121, 121021, 121151, 150151, 151051, 151121, 180181, 180811, 181081 (A134996)
梅森質數
每一個質數皆符合 2n − 1的數式,其中n為質數。
首12個梅森質數是:
3, 7, 31, 127, 8191, 131071, 524287, 2147483647, 2305843009213693951, 618970019642690137449562111, 162259276829213363391578010288127, 170141183460469231731687303715884105727 (A000668)
截至2018年1月,世界上已知的梅森質數有50個,當中第13,14和第50個(以底的數位大小排列),分別有157,183和23,249,425個數位。
梅森質數指數
每一個質數指數n帶入公式 2n − 1的數式的結果是質數。
2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209, 44497, 86243, 110503, 132049, 216091, 756839, 859433, 1257787, 1398269, 2976221, 3021377, 6972593, 13466917, 20996011, 24036583, 25964951, 30402457, 32582657, 37156667, 42643801, 43112609 (A000043)
雙梅森質數
每一個質數皆符合 的數式,其中p、 為質數。
7, 127, 2147483647, 170141183460469231731687303715884105727 (A077586裡的質數)
以上是截至2008年1月已知的雙梅森數。(屬於梅森數的子集)
艾森斯坦質數 (虛數部分除外)
艾森斯坦整數是 不可逆元 和實數 (每一個質數皆符合 3n − 1)的數式。
2, 5, 11, 17, 23, 29, 41, 47, 53, 59, 71, 83, 89, 101, 107, 113, 131, 137, 149, 167, 173, 179, 191, 197, 227, 233, 239, 251, 257, 263, 269, 281, 293, 311, 317, 347, 353, 359, 383, 389, 401 (A003627)
反質數
當這些質數的數位相反時將會成為另一個質數(以十進制為準)。
13, 17, 31, 37, 71, 73, 79, 97, 107, 113, 149, 157, 167, 179, 199, 311, 337, 347, 359, 389, 701, 709, 733, 739, 743, 751, 761, 769, 907, 937, 941, 953, 967, 971, 983, 991 (A006567)
階乘質數
每一個質數皆符合 n! − 1 或 n! + 1的數式。
2, 3, 5, 7, 23, 719, 5039, 39916801, 479001599, 87178291199, 10888869450418352160768000001, 265252859812191058636308479999999, 263130836933693530167218012159999999, 8683317618811886495518194401279999999 (A088054)
費波拿契質數
每一個質數皆符合 斐波那契数列 F0 = 0, F1 = 1, Fn = Fn-1 + Fn-2。
2, 3, 5, 13, 89, 233, 1597, 28657, 514229, 433494437, 2971215073, 99194853094755497, 1066340417491710595814572169, 19134702400093278081449423917 (A005478)
傅利曼質數
是在給定的進位制中,能夠用組成數字透過四則運算、括號和冪組成式子,結果是自己的質數。
127, 347, 2503, 12101, 12107, 12109, 15629, 15641, 15661, 15667, 15679, 16381, 16447, 16759, 16879, 19739, 21943, 27653, 28547, 28559, 29527, 29531, 32771, 32783, 35933, 36457, 39313, 39343, 43691, 45361, 46619, 46633, 46643, 46649, 46663, 46691, 48751, 48757, 49277, 58921, 59051, 59053, 59263, 59273, 64513, 74353, 74897, 78163, 83357(A112419)
高斯質數
它們的質數元皆屬於高斯整數並符合4n + 3.的數式。
3, 7, 11, 19, 23, 31, 43, 47, 59, 67, 71, 79, 83, 103, 107, 127, 131, 139, 151, 163, 167, 179, 191, 199, 211, 223, 227, 239, 251, 263, 271, 283, 307, 311, 331, 347, 359, 367, 379, 383, 419, 431, 439, 443, 463, 467, 479, 487, 491, 499, 503 (A002145)
好質數
當質數 pn對於pn2 > pi−1 × pi+1 符合條件 1 ≤ i ≤ n−1, 而 pn 是第n個質數。
5, 11, 17, 29, 37, 41, 53, 59, 67, 71, 97, 101, 127, 149, 179, 191, 223, 227, 251, 257, 269, 307 (A028388)
快樂質數
在快樂數中的所有質數。
7, 13, 19, 23, 31, 79, 97, 103, 109, 139, 167, 193, 239, 263, 293, 313, 331, 367, 379, 383, 397, 409, 487, 563, 617, 653, 673, 683, 709, 739, 761, 863, 881, 907, 937, 1009, 1033, 1039, 1093 (A035497)
希格斯質數 (對於平方)
當一個數p之前的所有希格斯數相乘後再平方,然後被p− 1這個數所整除時便是下一個希格斯質數。
2, 3, 5, 7, 11, 13, 19, 23, 29, 31, 37, 43, 47, 53, 59, 61, 67, 71, 79, 101, 107, 127, 131, 139, 149, 151, 157, 173, 181, 191, 197, 199, 211, 223, 229, 263, 269, 277, 283, 311, 317, 331, 347, 349 (A007459)
高cototient質數
當質數是一個欧拉函数多過任何一個除1以外比它小的整數。 cototient的定義是一個正整數n可以用一個正整數m和一個比它小的互質數所表示,數式是n-φ(n)。
根據定義,一個cototient不可能同時是一個非互補歐拉商數,數式是'm - φ(m) = n, 而φ 代表在歐拉函數, 是無解的。
2, 23, 47, 59, 83, 89, 113, 167, 269, 389, 419, 509, 659, 839, 1049, 1259, 1889 (A105440)
非正則素數
它們是單數質數p可被屬於第 p個的分圓域中的類數 所整除。
37, 59, 67, 101, 103, 131, 149, 157, 233, 257, 263, 271, 283, 293, 307, 311, 347, 353, 379, 389, 401, 409, 421, 433, 461, 463, 467, 491, 523, 541, 547, 557, 577, 587, 593, 607, 613, 617, 619 (A000928)
Kynea數
每一個質數皆符合 的數式。
2, 7, 23, 79, 1087, 66047, 263167, 16785407, 1073807359, 17180131327, 68720001023, 4398050705407, 70368760954879, 18014398777917439, 18446744082299486207 (A091514)
萊蘭質數
每一個質數皆符合 且 。
17, 593, 32993, 2097593, 8589935681, 59604644783353249, 523347633027360537213687137, 43143988327398957279342419750374600193 (A094133)
全循環質數(又名長質數)
在一個已知的底之下 b,對於一個質數p, 可以得出一個循環數。 對於底是10的質數p:
7, 17, 19, 23, 29, 47, 59, 61, 97, 109, 113, 131, 149, 167, 179, 181, 193, 223, 229, 233, 257, 263, 269, 313, 337, 367, 379, 383, 389, 419, 433, 461, 487, 491, 499, 503, 509, 541, 571, 577, 593 (A001913)
盧卡斯質數
質數符合盧卡斯數序列L0 = 2, L1 = 1, Ln = Ln-1 + Ln-2。
2[4], 3, 7, 11, 29, 47, 199, 521, 2207, 3571, 9349, 3010349, 54018521, 370248451, 6643838879, 119218851371, 5600748293801, 688846502588399, 32361122672259149 (A005479)
幸運質數
幸運數是經由類似埃拉托斯特尼篩法〔一種用刪去法檢定質數的演算法〕的演算法後留下的整數集合。
3, 7, 13, 31, 37, 43, 67, 73, 79, 127, 151, 163, 193, 211, 223, 241, 283, 307, 331, 349, 367, 409, 421, 433, 463, 487, 541, 577, 601, 613, 619, 631, 643, 673, 727, 739, 769, 787, 823, 883, 937, 991, 997 (A031157)
馬爾可夫質數
對於質數p ,存在整數 x 和 y 使成立。
2, 5, 13, 29, 89, 233, 433, 1597, 2897, 5741, 7561, 28657, 33461, 43261, 96557, 426389, 514229 (primes in A002559)
米爾斯質數數
每一個質數皆符合 的表達式, 而 θ 是米爾斯常數. 對於所有正整數n,這種表達形式都是質數。
2, 11, 1361, 2521008887, 16022236204009818131831320183 (A051254)
極小質數
當質數在數字順序不變下,所有子序列都不是質數,該質數就是極小質數。
極小質數的總數是26個:
2, 3, 5, 7, 11, 19, 41, 61, 89, 409, 449, 499, 881, 991, 6469, 6949, 9001, 9049, 9649, 9949, 60649, 666649, 946669, 60000049, 66000049, 66600049 (A071062)
紐曼-尚克斯-威廉士質數
當這些質數當且僅當能寫成以下的形式:便歸這一類。
7, 41, 239, 9369319, 63018038201, 489133282872437279, 19175002942688032928599 (A088165)
奇數質數
當這些質數能以2n - 1表達便是。
3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199 (A065091)
這質數其實相等於2以外的所有質數。
巴都萬質數
所有質數皆在巴都萬數列之中並符合, 的數式。
2, 3, 5, 7, 37, 151, 3329, 23833, 13091204281, 3093215881333057, 1363005552434666078217421284621279933627102780881053358473 (A100891)
迴文質數
顧名思義,是屬於左右對稱的質數,因為回讀時仍是一樣(以十進制為準)。
2, 3, 5, 7, 11, 101, 131, 151, 181, 191, 313, 353, 373, 383, 727, 757, 787, 797, 919, 929, 10301, 10501, 10601, 11311, 11411, 12421, 12721, 12821, 13331, 13831, 13931, 14341, 14741 (A002385)
佩爾質數
在佩爾數序列中符合P0 = 0, P1 = 1, Pn = 2Pn-1 + Pn-2。
2, 5, 29, 5741, 33461, 44560482149, 1746860020068409, 68480406462161287469, 13558774610046711780701, 4125636888562548868221559797461449 (A086383)
可交換質數
將該質數中的數字任意排列皆可成為另一個質數的數字稱為可交換質數(以十進制為準)。
2, 3, 5, 7, 11, 13, 17, 31, 37, 71, 73, 79, 97, 113, 131, 199, 311, 337, 373, 733, 919, 991, 1111111111111111111, 11111111111111111111111 (A003459)
接下來的可交換質數多半是循環單位的,即是只有數字1。
佩蘭質數
屬於佩蘭數列的質數,可用數式P(0) = 3, P(1) = 0, P(2) = 2, P(n) = P(n − 2) + P(n − 3)表達。
2, 3, 5, 7, 17, 29, 277, 367, 853, 14197, 43721, 1442968193, 792606555396977, 187278659180417234321, 66241160488780141071579864797 (A074788)
皮爾龐特質數
每一個質數皆符合 ,而且對於整數u,v ≥ 0。
這個質數是以數學家James Pierpont來命名。
這亦都是 素数。
2, 3, 5, 7, 13, 17, 19, 37, 73, 97, 109, 163, 193, 257, 433, 487, 577, 769, 1153, 1297, 1459, 2593, 2917, 3457, 3889, 10369, 12289, 17497, 18433, 39367, 52489, 65537, 139969, 147457 (A005109)
皮萊質數
對於每一個質數p存在n > 0 而令到p可被n! + 1整除但n不被p − 1所整除。
23, 29, 59, 61, 67, 71, 79, 83, 109, 137, 139, 149, 193, 227, 233, 239, 251, 257, 269, 271, 277, 293, 307, 311, 317, 359, 379, 383, 389, 397, 401, 419, 431, 449, 461, 463, 467, 479, 499 (A063980)
原始數
這些質數對於部分或所有十進制和任何一個比它要細的數要擁有多個的質數排列方式。
2, 13, 37, 107, 113, 137, 1013, 1237, 1367, 10079 (A119535)
質數階乘質數
每一個質數皆符合' pn# − 1 或者 pn# + 1。
3, 5, 7, 29, 31, 211, 2309, 2311, 30029, 200560490131, 304250263527209, 23768741896345550770650537601358309 (union of A057705 and A018239[2])
普羅斯質數
每一個質數皆符合k · 2n + 1 而且 k是單數和 k < 2n。
3, 5, 13, 17, 41, 97, 113, 193, 241, 257, 353, 449, 577, 641, 673, 769, 929, 1153, 1217, 1409, 1601, 2113, 2689, 2753, 3137, 3329, 3457, 4481, 4993, 6529, 7297, 7681, 7937, 9473, 9601, 9857 (A080076)
毕达哥拉斯質数
每一個質數皆符合 4n + 1的表達式。
5, 13, 17, 29, 37, 41, 53, 61, 73, 89, 97, 101, 109, 113, 137, 149, 157, 173, 181, 193, 197, 229, 233, 241, 257, 269, 277, 281, 293, 313, 317, 337, 349, 353, 373, 389, 397, 401, 409, 421, 433, 449 (A002144)
四連質數
即是連續四個相差2的質數:(p, p+2, p+6, p+8)。
(5, 7, 11, 13), (11, 13, 17, 19), (101, 103, 107, 109), (191, 193, 197, 199), (821, 823, 827, 829), (1481, 1483, 1487, 1489), (1871, 1873, 1877, 1879), (2081, 2083, 2087, 2089), (3251, 3253, 3257, 3259), (3461, 3463, 3467, 3469), (5651, 5653, 5657, 5659), (9431, 9433, 9437, 9439) (A007530, A136720, A136721, A090258)
拉瑪努金質質數
在所有整數的 Rn要是最細的,因而才能給予最少的質數 n 由 x/2 至 x 對於所有 x ≥ Rn (所有整數都需要是質數)。
這個假設由印度數學家斯里尼瓦瑟·拉馬努金(Srinivasa Aaiyabgar Ramanujan 1887-1920)所證實並因而得名。
2, 11, 17, 29, 41, 47, 59, 67, 71, 97, 101, 107, 127, 149, 151, 167, 179, 181, 227, 229, 233, 239, 241, 263, 269, 281, 307, 311, 347, 349, 367, 373, 401, 409, 419, 431, 433, 439, 461, 487, 491 (A104272)
正則質數
對於所有質數 p 不能被屬於第 p個的分圓域中的類數 所整除。
3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 41, 43, 47, 53, 61, 71, 73, 79, 83, 89, 97, 107, 109, 113, 127, 137, 139, 151, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 239, 241, 251, 269, 277, 281 (A007703)
循環質數
所有只以1作為唯一數字的質數。
11, 1111111111111111111, 11111111111111111111111 (A004022)
接下的兩項分別有317和1031個數位。
剩餘組別的質數
對於固定的 a和d,每一個質數皆符合 a · n + d的表達式。 亦可理解為質數相稱 d 模算數 a.
當中有三個個案有其自身的名字,2n+1是奇數質數,4n+1是四連質數,4n+3是高斯質數。
2n+1: 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53 (A065091)
4n+1: 5, 13, 17, 29, 37, 41, 53, 61, 73, 89, 97, 101, 109, 113, 137 (A002144)
4n+3: 3, 7, 11, 19, 23, 31, 43, 47, 59, 67, 71, 79, 83, 103, 107 (A002145)
6n+1: 7, 13, 19, 31, 37, 43, 61, 67, 73, 79, 97, 103, 109, 127, 139 (A002476)
6n+5: 5, 11, 17, 23, 29, 41, 47, 53, 59, 71, 83, 89, 101, 107, 113 (A007528)
8n+1: 17, 41, 73, 89, 97, 113, 137, 193, 233, 241, 257, 281, 313, 337, 353 (A007519)
8n+3: 3, 11, 19, 43, 59, 67, 83, 107, 131, 139, 163, 179, 211, 227, 251 (A007520)
8n+5: 5, 13, 29, 37, 53, 61, 101, 109, 149, 157, 173, 181, 197, 229, 269 (A007521)
8n+7: 7, 23, 31, 47, 71, 79, 103, 127, 151, 167, 191, 199, 223, 239, 263 (A007522)
10n+1: 11, 31, 41, 61, 71, 101, 131, 151, 181, 191, 211, 241, 251, 271, 281 (A030430)
10n+3: 3, 13, 23, 43, 53, 73, 83, 103, 113, 163, 173, 193, 223, 233, 263 (A030431)
10n+7: 7, 17, 37, 47, 67, 97, 107, 127, 137, 157, 167, 197, 227, 257, 277 (A030432)
10n+9: 19, 29, 59, 79, 89, 109, 139, 149, 179, 199, 229, 239, 269, 349, 359 (A030433)
...
10n+d (d = 1, 3, 7, 9)d是質數的數位結尾。
可右截短質數
當一個數從右方逐一移除位數時,每一個餘下來的數都是質數。
十進制的可右截短質數共有83個,以下是完整列表:
- 2, 3, 5, 7, 23, 29, 31, 37, 53, 59, 71, 73, 79, 233, 239, 293, 311, 313, 317, 373, 379, 593, 599, 719, 733, 739, 797, 2333, 2339, 2393, 2399, 2939, 3119, 3137, 3733, 3739, 3793, 3797, 5939, 7193, 7331, 7333, 7393, 23333, 23339, 23399, 23993, 29399, 31193, 31379, 37337, 37339, 37397, 59393, 59399, 71933, 73331, 73939, 233993, 239933, 293999, 373379, 373393, 593933, 593993, 719333, 739391, 739393, 739397, 739399, 2339933, 2399333, 2939999, 3733799, 5939333, 7393913, 7393931, 7393933, 23399339, 29399999, 37337999, 59393339, 73939133 (OEIS中的数列A024770)
可左截短質數
當一個數從左方逐一移除位數時,每一個餘下來的數都是質數。
十進制的可左截短質數共有4260個:
- 2, 3, 5, 7, 13, 17, 23, 37, 43, 47, 53, 67, 73, 83, 97, 113, 137, 167, 173, 197, 223, 283, 313, 317, 337, 347, 353, 367, 373, 383, 397, 443, 467, 523, 547, 613, 617, 643, 647, 653, 673, 683, 743, 773, 797, 823, 853, 883, 937, 947, 953, 967, 983, 997, 1223, 1283, 1367 ... (OEIS中的数列A024785)
最大的是24位數的357686312646216567629137。
安全質數
當p是質數,同時(p-1) / 2都是質數便成立。
5, 7, 11, 23, 47, 59, 83, 107, 167, 179, 227, 263, 347, 359, 383, 467, 479, 503, 563, 587, 719, 839, 863, 887, 983, 1019, 1187, 1283, 1307, 1319, 1367, 1439, 1487, 1523, 1619, 1823, 1907 (A005385)
自我質數
當這些質數不能以其他十進制的整數相加所產生時便是自我質數。
3, 5, 7, 31, 53, 97, 211, 233, 277, 367, 389, 457, 479, 547, 569, 613, 659, 727, 839, 883, 929, 1021, 1087, 1109, 1223, 1289, 1447, 1559, 1627, 1693, 1783, 1873 (A006378)
六質數
顧名思義,即是(p, p + 6)都是質數。
(5,11), (7,13), (11,17), (13,19), (17,23), (23,29), (31,37), (37,43), (41,47), (47,53), (53,59), (61,67), (67,73), (73,79), (83,89), (97,103), (101,107), (103,109), (107,113), (131,137), (151,157), (157,163), (167,173), (173,179), (191,197), (193,199) (A023201, A046117)
Smarandache–Wellin質數
對於頭n個質數,其數字本身都要由質數組成,(以十進制為準)。
第四個沙馬雲達基- 韋倫質數是以頭128個質數所串連而成的,以719作結。
索菲熱爾曼質數
這個質數的條件是p和 2p + 1皆是質數。
2, 3, 5, 11, 23, 29, 41, 53, 83, 89, 113, 131, 173, 179, 191, 233, 239, 251, 281, 293, 359, 419, 431, 443, 491, 509, 593, 641, 653, 659, 683, 719, 743, 761, 809, 911, 953 (A005384)
星形質數
每一個質數皆符合6n(n - 1) + 1的數式,形狀是一個正六角星。
13, 37, 73, 181, 337, 433, 541, 661, 937, 1093, 2053, 2281, 2521, 3037, 3313, 5581, 5953, 6337, 6733, 7561, 7993, 8893, 10333, 10837, 11353, 12421, 12973, 13537, 15913, 18481 (A083577)
Stern質數
每一個質數都不能夠是一個比它小的質數和某個非零平方數的兩倍之和。
2, 3, 17, 137, 227, 977, 1187, 1493 (A042978)
以上是截至2008年1月的所有Stern 質數,而且多半是全部的Stern 質數。
這個質數的是由德國數學家Moritz Abraham Stern (June 29, 1807–January 30, 1894)所提出,因而得名。
超級質數
在質數序列中的有質數指數的質數(第2,第3,第5個...質數)。
3, 5, 11, 17, 31, 41, 59, 67, 83, 109, 127, 157, 179, 191, 211, 241, 277, 283, 331, 353, 367, 401, 431, 461, 509, 547, 563, 587, 599, 617, 709, 739, 773, 797, 859, 877, 919, 967, 991 (A006450)
超奇異質數
魔群月光理論的一個分支(詳情:頂點代數),一個超級單獨質數擁有多種質數(Supersingular)。超級單獨質數是指一個質因數階的怪獸群Baby怪獸群M,而M是最大的離散單群。
超級單獨質數共有15個:
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 41, 47, 59, 71 (A002267)
塔別脫質數 (全名塔別脫·本·科拉質數)
每一個質數皆符合 3 · 2n - 1的表達式。
2, 5, 11, 23, 47, 191, 383, 6143, 786431, 51539607551, 824633720831, 26388279066623, 108086391056891903, 55340232221128654847, 226673591177742970257407 (A007505)
三胞胎素数
即是(p, p+2, p+6) 或 (p, p+4, p+6)都是質數。
(5, 7, 11), (7, 11, 13), (11, 13, 17), (13, 17, 19), (17, 19, 23), (37, 41, 43), (41, 43, 47), (67, 71, 73), (97, 101, 103), (101, 103, 107), (103, 107, 109), (107, 109, 113), (191, 193, 197), (193, 197, 199), (223, 227, 229), (227, 229, 233), (277, 281, 283), (307, 311, 313), (311, 313, 317), (347, 349, 353) (A007529, A098414, A098415)
孿生質數
即是(p, p + 2)都是質數,是以對的形式存在的質數。
(3, 5), (5, 7), (11, 13), (17, 19), (29, 31), (41, 43), (59, 61), (71, 73), (101, 103), (107, 109), (137, 139), (149, 151), (179, 181), (191, 193), (197, 199), (227, 229), (239, 241), (269, 271), (281, 283), (311, 313), (347, 349), (419, 421), (431, 433), (461, 463) (A001359, A006512)
烏拉姆數列
數列的首兩項U1和U2定義為1和2,對於n>2,Un為最小而又能剛好以一種方法表達成之前其中兩個相異項的和中的質數便是烏拉姆質數。
2, 3, 11, 13, 47, 53, 97, 131, 197, 241, 409, 431, 607, 673, 739, 751, 983, 991, 1103, 1433, 1489, 1531, 1553, 1709, 1721, 2371, 2393, 2447, 2633, 2789, 2833, 2897 (A068820)
唯一質數
對於每一個質數p來說,它的周期函數1/p是唯一的。(即是沒有一個質數可給予同樣的結果)
3, 11, 37, 101, 9091, 9901, 333667, 909091, 99990001, 999999000001, 9999999900000001, 909090909090909091, 1111111111111111111, 11111111111111111111111, 900900900900990990990991 (A040017)
瓦格斯塔夫質數
每一個質數皆符合(2n + 1) / 3的數式。
3, 11, 43, 683, 2731, 43691, 174763, 2796203, 715827883, 2932031007403, 768614336404564651, 201487636602438195784363, 845100400152152934331135470251, 56713727820156410577229101238628035243 (A000979)
n的值包括:
3, 5, 7, 11, 13, 17, 19, 23, 31, 43, 61, 79, 101, 127, 167, 191, 199, 313, 347, 701, 1709, 2617, 3539, 5807, 10501, 10691, 11279, 12391, 14479, 42737, 83339, 95369, 117239, 127031, 138937, 141079, 267017, 269987, 374321 (A000978)
温德伯恩-埃瑟靈頓質數
在圖論來說,Wedderburn-Etherington數是用作點算有多少弱的二元樹可以被繪製,亦即是說,每一幅圖中除了根外的頂點數目(詳情樹 (資料結構))與不多過三個的頂點相連。然而在Wedderburn-Etherington數中的質數便是温德伯恩-埃瑟靈頓質數。
2, 3, 11, 23, 983, 2179, 24631, 3626149, 253450711, 596572387 (primes in A001190)
參見
注释
- Tomás Oliveira e Silva, Goldbach conjecture verification.
- A018239 includes 2 = empty product of first 0 primes plus 1, but 2 is excluded in this list.
- 埃里克·韦斯坦因. . MathWorld.
- It varies whether L0 = 2 is included in the Lucas numbers.
外部链接
- 質數列表
- 首9億8千萬個質數列表 (少於2,000,000,000的質數)
- 埃里克·韦斯坦因. Number Sequences.html 请检查
|url=
值 (帮助). MathWorld. - 經挑選的相關質數序列 in 整數數列線上大全.
- 大數分解是一個提及不少質數的中文網頁。
- GIMPS 網際網路梅森質數大搜索