䥑(Meitnerium)人工合成放射性化學元素,化學符號為Mt原子序為109。䥑是9 (VIIIB)族最重的元素,但由於沒有足夠穩定的䥑同位素,因此未能通過化學實驗來驗證䥑的性質是否符合週期律。䥑於1982年首次合成。䥑的放射性極強,其最穩定同位素為278Mt,半衰期為7.6秒。

注意:本页面含有Unihan新版用字:「𨭆𫟼𬬭𬭶」。有关可能會错误显示,詳见Unicode汉字。

   109Mt
氫(非金屬) 氦(惰性氣體)
鋰(鹼金屬) 鈹(鹼土金屬) 硼(類金屬) 碳(非金屬) 氮(非金屬) 氧(非金屬) 氟(鹵素) 氖(惰性氣體)
鈉(鹼金屬) 鎂(鹼土金屬) 鋁(貧金屬) 矽(類金屬) 磷(非金屬) 硫(非金屬) 氯(鹵素) 氬(惰性氣體)
鉀(鹼金屬) 鈣(鹼土金屬) 鈧(過渡金屬) 鈦(過渡金屬) 釩(過渡金屬) 鉻(過渡金屬) 錳(過渡金屬) 鐵(過渡金屬) 鈷(過渡金屬) 鎳(過渡金屬) 銅(過渡金屬) 鋅(過渡金屬) 鎵(貧金屬) 鍺(類金屬) 砷(類金屬) 硒(非金屬) 溴(鹵素) 氪(惰性氣體)
銣(鹼金屬) 鍶(鹼土金屬) 釔(過渡金屬) 鋯(過渡金屬) 鈮(過渡金屬) 鉬(過渡金屬) 鎝(過渡金屬) 釕(過渡金屬) 銠(過渡金屬) 鈀(過渡金屬) 銀(過渡金屬) 鎘(過渡金屬) 銦(貧金屬) 錫(貧金屬) 銻(類金屬) 碲(類金屬) 碘(鹵素) 氙(惰性氣體)
銫(鹼金屬) 鋇(鹼土金屬) 鑭(鑭系元素) 鈰(鑭系元素) 鐠(鑭系元素) 釹(鑭系元素) 鉕(鑭系元素) 釤(鑭系元素) 銪(鑭系元素) 釓(鑭系元素) 鋱(鑭系元素) 鏑(鑭系元素) 鈥(鑭系元素) 鉺(鑭系元素) 銩(鑭系元素) 鐿(鑭系元素) 鎦(鑭系元素) 鉿(過渡金屬) 鉭(過渡金屬) 鎢(過渡金屬) 錸(過渡金屬) 鋨(過渡金屬) 銥(過渡金屬) 鉑(過渡金屬) 金(過渡金屬) 汞(過渡金屬) 鉈(貧金屬) 鉛(貧金屬) 鉍(貧金屬) 釙(貧金屬) 砈(類金屬) 氡(惰性氣體)
鍅(鹼金屬) 鐳(鹼土金屬) 錒(錒系元素) 釷(錒系元素) 鏷(錒系元素) 鈾(錒系元素) 錼(錒系元素) 鈽(錒系元素) 鋂(錒系元素) 鋦(錒系元素) 鉳(錒系元素) 鉲(錒系元素) 鑀(錒系元素) 鐨(錒系元素) 鍆(錒系元素) 鍩(錒系元素) 鐒(錒系元素) 鑪(過渡金屬) 𨧀(過渡金屬) 𨭎(過渡金屬) 𨨏(過渡金屬) 𨭆(過渡金屬) 䥑(預測為過渡金屬) 鐽(預測為過渡金屬) 錀(預測為過渡金屬) 鎶(過渡金屬) 鉨(預測為貧金屬) 鈇(貧金屬) 鏌(預測為貧金屬) 鉝(預測為貧金屬) 鿬(預測為鹵素) 鿫(預測為惰性氣體)




(Upe)
𨭆
概況
名稱·符號·序數䥑(Meitnerium)·Mt·109
元素類別未知
可能為過渡金屬[1][2]
·週期·9 ·7·d
標準原子質量[278]
電子排布[Rn] 5f14 6d7 7s2
(計算值)[1][3]
2, 8, 18, 32, 32, 15, 2
(預測)
䥑的电子層(2, 8, 18, 32, 32, 15, 2
(預測))
歷史
發現重離子研究所(1982年)
物理性質
物態固體(預測)[2]
密度(接近室温
37.4(預測)[1] g·cm−3
蒸氣壓
原子性質
氧化態9, 8, 6, 4, 3, 1(預測)[1][4][5]
電離能第一:800.8(估值)[1] kJ·mol−1

第二:1823.6(估值)[1] kJ·mol−1
第三:2904.2(估值)[1] kJ·mol−1

更多
原子半徑122(預測)[1] pm
共價半徑129(估值)[6] pm
雜項
晶體結構面心立方 (預測)[2]
磁序順磁性(預測)[7]
CAS號54038-01-6
最穩定同位素
主条目:䥑的同位素
同位素 丰度 半衰期 (t1/2) 衰變
方式 能量MeV 產物
278Mt syn 7.6 s α 9.6 274Bh
276Mt syn 0.72 s α 9.71 272Bh
274Mt syn 0.44 s α 9.76 270Bh
270mMt? syn 1.1 s α 266Bh
此處只列出半衰期超過0.1秒的同位素

歷史

發現

此元素在1982年8月29日由彼得·安布鲁斯特Gottfried Münzenberg領導的研究團隊所合成出來,此團隊位於德國黑森邦達姆施塔特重離子研究所[8] 他們利用-58離子轟擊-209合成了266Mt的單一原子:

命名

根据IUPAC元素系统命名法,䥑的舊稱是Unnilennium,來自1、0、9的拉丁語寫法。

1997年8月27日IUPAC正式對國際上分歧較大的101至109號元素的重新英文定名中,Meitnerium正式作為108號元素的命名,以紀念奧地利瑞典原子物理學家莉澤·邁特納(Lise Meitner)。[9]

全國科學技術名詞化學名詞審定委員會據此於1998年7月8日重新审定、公佈101至109號元素的中文命名,其中首次給出109號元素中文名:「䥑」(mài,音同「麥」)[10][11][12]

未來實驗

日本理化學研究所的一個團隊已表示有計劃研究以下反應:

同位素與核特性

能產生Z=109复核的目標、發射體組合

下表列出各種可用以產生109號元素的目標、發射體組合。

目標發射體CN結果
208Pb 59Co267Mt反應成功
209Bi 58Fe267Mt反應成功
232Th 41K273Mt尚未嘗試
231Pa 40Ar271Mt尚未嘗試
238U 37Cl275Mt至今失敗
237Np 36S275Mt尚未嘗試
244Pu 31P275Mt尚未嘗試
242Pu 31P273Mt尚未嘗試
243Am 30Si273Mt尚未嘗試
248Cm 27Al275Mt尚未嘗試
250Cm 27Al277Mt尚未嘗試
249Bk 26Mg275Mt尚未嘗試
249Cf 23Na272Mt尚未嘗試
251Cf 23Na274Mt尚未嘗試
254Es 22Ne276Mt至今失敗

作為衰變產物

科學家也曾在更重元素的衰變產物中發現䥑的同位素。

蒸發殘留觀測到的䥑同位素
294Ts278Mt
288Mc276Mt
287Mc275Mt
282Nh274Mt
278Nh270Mt
272Rg268Mt

同位素發現時序

同位素發現年份核反應
266Mt1982年209Bi(58Fe,n)[8]
267Mt未知
268Mt1994年209Bi(64Ni,n)[13]
269Mt未知
270Mt2004年209Bi(70Zn,n)[14]
271Mt未知
272Mt未知
273Mt未知
274Mt2006年237Np(48Ca,3n)
275Mt2003年243Am(48Ca,4n)[15]
276Mt2003年243Am(48Ca,3n)
277Mt未知
278Mt2009年249Bk(48Ca,3n)[16]

270Mt

科學家在278Nh的衰變鏈中確定探測到兩個270Mt原子。這兩個原子擁有非常不同的衰期和衰變能量,並來自兩個不同的274Rg同核異構體。第一種同核異構體經過α衰變,能量為10.03 MeV,半衰期為7.16毫秒;另一種的半衰期為1.63秒,但衰變能量未知。由於缺乏數據,要對這些同核異構體進行實際的能級分配,必需作進一步的研究。

268Mt

多個實驗的結果顯示,268Mt的α衰變光譜是非常複雜的。從268Mt釋放出的α粒子能量有10.28、10.22和10.10 MeV,半衰期也分別為42毫秒、21毫秒和102毫秒。長半衰期的一次衰變事件來自同核異能態。科學家正在研究其他兩個半衰期差距的原因。由於缺乏數據,要對這些同核異構體進行實際的能級分配,必需作進一步的研究。

同位素產量

下表列出直接合成䥑的聚變核反應的截面和激發能量。粗體數據代表從激發函數算出的最大值。+代表觀測到的出口通道。

冷聚變

發射體目標CN1n2n3n
58Fe209Bi267Mt7.5 pb
59Co208Pb267Mt2.6 pb, 14.9 MeV

理論計算

下表列出各種目標-發射體組合,並給出最高的預計產量。

HIVAP = 重離子汽化統計蒸發模型; σ = 截面

目標發射體CN通道(產物)σmax模型參考資料
243Am 30Si273Mt3n (270Mt)22 pbHIVAP[17]
243Am 28Si271Mt4n (267Mt)3 pbHIVAP[17]
249Bk 26Mg275Mt4n (271Mt)9.5 pbHIVAP[17]
254Es 22Ne276Mt4n (272Mt)8 pbHIVAP[17]
254Es 20Ne274Mt4-5n (270,269Mt)3 pbHIVAP[17]

化學屬性

物理特性

根據週期表的趨勢,䥑應該是一種高密度金屬,密度大約為37.4 g/cm3[1]:8.9,:12.5,:22.5),熔點也很高,約為2600至2900°C(鈷:1480,銠:1966,銥:2454)。它的耐腐蝕性可能很高,甚至比銥更高。

氧化態

䥑預計將是6d系過渡金屬的第7個元素,也是週期表中9族最重的成員,位於的下面。較重的兩個9族元素氧化態為+6,而銥最穩定的為+4和+3態,銠則呈穩定的+3態。因此預期䥑會形成穩定的+3狀態,但也可能有穩定的+4和+6態。

化學特性

䥑應可形成六氟化物MtF6。這氟化物預計將較六氟化銥更加穩定,因為同族元素從上到下的+6氧化態越來越穩定。

在與氧發生反應時,銠主要形成Rh2O3 ,而銥會被氧化為+4態的IrO2。因此䥑可能會形成二氧化物MtO2

9族元素的+3態常見於與鹵素直接反應所形成的三鹵化物(氟化物除外)。因此䥑應可形成MtCl3、MtBr3和MtI3

參考資料

  1. Haire, Richard G. . Morss; Edelstein, Norman M.; Fuger, Jean (编). 3rd. Dordrecht, The Netherlands: Springer Science+Business Media. 2006. ISBN 1-4020-3555-1.
  2. Östlin, A.; Vitos, L. . Physical Review B. 2011, 84 (11). Bibcode:2011PhRvB..84k3104O. doi:10.1103/PhysRevB.84.113104.
  3. Thierfelder, C.; Schwerdtfeger, P.; Heßberger, F. P.; Hofmann, S. . The European Physical Journal A. 2008, 36 (2): 227. Bibcode:2008EPJA...36..227T. doi:10.1140/epja/i2008-10584-7.
  4. Ionova, G. V.; Ionova, I. S.; Mikhalko, V. K.; Gerasimova, G. A.; Kostrubov, Yu. N.; Suraeva, N. I. . Russian Journal of Coordination Chemistry. 2004, 30 (5): 352. doi:10.1023/B:RUCO.0000026006.39497.82.
  5. Himmel, Daniel; Knapp, Carsten; Patzschke, Michael; Riedel, Sebastian. . ChemPhysChem. 2010, 11 (4): 865–9. PMID 20127784. doi:10.1002/cphc.200900910.
  6. Chemical Data. Meitnerium - Mt 页面存档备份,存于, Royal Chemical Society
  7. Saito, Shiro L. . Atomic Data and Nuclear Data Tables. 2009, 95 (6): 836. Bibcode:2009ADNDT..95..836S. doi:10.1016/j.adt.2009.06.001.
  8. Münzenberg, G.; Armbruster, P.; Heßberger, F. P.; Hofmann, S.; Poppensieker, K.; Reisdorf, W.; Schneider, J. H. R.; Schneider, W. F. W.; Schmidt, K.-H. . Zeitschrift für Physik A. 1982, 309 (1): 89. Bibcode:1982ZPhyA.309...89M. doi:10.1007/BF01420157.
  9. . Pure and Applied Chemistry. 1997, 69 (12): 2471. doi:10.1351/pac199769122471.
  10. 中国化学会无机化学名词小组修订. . 1982-12: 4-5 [2020-11-10].
  11. 刘路沙. . 光明网. 光明日报. [2020-11-10]. (原始内容存档于2020-11-10).
  12. 贵州地勘局情报室摘于《中国地质矿产报》(1998年8月13日). . 貴州地質. 1998, 15: 298–298 [2020-11-10]. (原始内容存档于2020-12-03).
  13. 詳見
  14. 詳見
  15. 詳見
  16. Oganessian, Yu. Ts.; Abdullin, F. Sh.; Bailey, P. D.; Benker, D. E.; Bennett, M. E.; Dmitriev, S. N.; Ezold, J. G.; Hamilton, J. H.; Henderson, R. A. . Physical Review Letters. 2010, 104. Bibcode:2010PhRvL.104n2502O. PMID 20481935. doi:10.1103/PhysRevLett.104.142502.
  17. Wang Kun; 等. . Chinese Physics Letters. 2004, 21 (3): 464. Bibcode:2004ChPhL..21..464W. arXiv:nucl-th/0402065. doi:10.1088/0256-307X/21/3/013.

外部連結

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.