钠
鈉是一種化學元素,元素符號為Na,原子序為11,相對原子量為23。它是柔軟且活性大的銀白色金屬。鈉是週期表的第一族元素,為鹼金屬的一員。因為它的價殼層只有單個電子,所以容易失去電子形成帶正電的陽離子Na+。鈉唯一的穩定同位素為鈉-23。純金屬態的鈉並不存在自然界中,須以含鈉的化合物來製備。鈉是地殼中含量第六多的元素,並且多數存在於礦物中,如長石、方鈉石以及鹽岩(NaCl)等。多數鈉鹽溶解度都很高:超過億萬的鈉離子都被水自礦物中給溶出,因此在溶於海洋的元素中,鈉離子和氯離子是最常見的。
鈉在西元1807年最先由Humphry Davy以電解氫氧化鈉分解出來,鈉化合物有許多應用,像是NaOH(鹼液)可用於肥皂製造、NaCl(食鹽)可做為除冰劑也是動物和人類體內的養分。
鈉對所有動物植物都是必要的元素。鈉離子是細胞外液(ECF)中最重要的陽離子,對細胞外液的滲透壓和細胞外液的間隔具重要影響,間隔中的水份流失,會造成鈉離子濃度上升,這種情況稱為高鈉血症,細胞外液間隔中的水和鈉離子等滲性的流失,造成間隔大小變小,這種情況稱為低血鈉症。
鈉鉀幫浦在人的細胞中用來三個鉀離子移到細胞外,並將兩個鈉離子進入細胞內。測量細胞膜內外的離子濃度,鉀離子為40:1,而鈉離子為1:10。在神經細胞中,當神經細胞靜止時,細胞膜電荷的交換會造成神經衝動的傳導,稱之為動作電位,而鈉是此作用的關鍵。
性質
钠是一种质地软(可以用普通餐刀切割)、轻、蜡状而极有延展性、银白色(但会因氧化而变暗)的1A族的碱金属元素。
陽離子燃烧发出金黄色火焰生成过氧化钠。
和水起爆炸反应(產生高温使自己熔成一個銀白色的圓球在水面高速移動,並不斷釋放氫),生成氢氧化钠(鹼性溶液)。
与醇反应生成醇钠。因此通常保存在煤油或石蜡中。钠可以和大部分元素反应,但是很难和硼、碳、铁和镍反应。钠在高温下可以和硅酸盐反应,侵蚀玻璃和瓷器。
名称由来
其拉丁文为Natrium,從一個只有在19世纪前用的英文字来源natron,原指一种天然碱。此字从西班牙文传至法文,然后到英文。最开始是在阿拉伯文,写为natrūn。希腊文是使用阿拉伯文的变体nitrūn,所以变成nítron(此字是氮的来源)。然后在从希腊文的nítron传到西班牙文。
英文中鈉的名字Sodium來自其發現時電解的原材料-蘇打粉(Soda)。
分布
钠在自然界中以化合物的形式存在,是最常見的鹼性金屬,也是地球上第六豐富的元素[2]。钠大量的存在于钠长石(NaAlSi3O8)、食盐(氯化钠,NaCl)、智利硝石(硝酸钠,NaNO3)、纯碱(碳酸钠,Na2CO3)等礦物中。此外,在海水中以钠离子的形式存在,在海水中含量约为2.7%。钠也是人体肌肉和神经组织中的主要成分之一。
制备
钠的制备方法主要有当斯法(Downs)和卡斯纳法(Castner)。
用途
钠在很多种重要的工业化工产品的生产中得到广泛应用。液態鈉以及钠钾合金可以用作快中子反應爐的冷却材料,有机合成的还原剂。可用于制造氰化钠、维生素、香料、染料、钠汞齐、四乙基铅、金属钛等,还可用于石油精制等方面。
对人体的影响
鈉是人體必需的礦物質營養素[3][4]。體內的鈉大多存在於血液及細胞外液,於人體的體液平衡及其他的生理功能都有很大的關聯。鈉離子(下文中簡稱鈉)是细胞外液中带正电的離子中含量最豐富的,在身体内有助維持滲透壓,也協助神经、心臟、肌肉及各種生理功能的正常運作。鈉與水在體內的代谢與平衡有相當密切的關係,對血壓更有相當的影響。鈉是各種體液常見的離子成分,體內的鈉主要經由腎臟製造的尿液排除,但汗水大量流失時,也可排出相當量的鈉。體內對鈉的調節與對水的調節息息相關,在下視丘可分泌抗利尿激素,作用於腎臟以減少水的排除,進而調控體內水與鈉的比例。
含量與分佈
人體鈉含量為105克,其中骨骼表面佔總含量的30%。血鈉正常濃度為每升血液含鈉3.15-3.4克。[5]
每日鈉流失量約為115毫克,其中23毫克由尿及排洩物排出,46-92毫克經由表皮流失。
吸收與排泄
鈉的攝入主要是通過食物,尤其是食鹽(NaCl)。成人每日建議攝取量為2.3克,兒童與少年為1.5-2.2克[6]。每日攝入的鈉幾乎全部都由胃腸道吸收,人體鈉吸收率為95-100%。
鈉排出的主要途徑是腎臟、皮膚及消化道。皮膚對鈉的排洩主要是通過汗液的排出,特殊情況下,如大量出汗等,通過皮膚排出的鈉則大大增加。少量的鈉隨糞便排出。 一般情況下腎臟是鈉的主要排泄器官。腎臟根據身體鈉含量的情況調節尿中排鈉量。腎小管過濾的鈉有95%經腎小管再吸收:近端腎小管吸收約65%,亨利氏管吸收25%,其餘10%在遠端腎小管與鉀、氫分泌相交換。
生理與生化功能
- 葡萄糖吸收
- 小腸細胞面對腸腔細胞膜上具有攜帶蛋白Na+/glucose cotransport,與葡萄糖或半乳糖及鈉離子形成一複合體後,將單醣和鈉送入細胞內。小腸細胞面對微血管之細胞膜上具有鈉泵,利用ATP將細胞內的鈉釋入血液,而葡萄糖或半乳糖則經由血液輸往肝臟。
- 鈉離子通道
- 穿過細胞膜上的蛋白質,提供鈉離子進出細胞的通道,可維持細胞內外的電位差。
- 钠离子/氢离子交換和氯离子/碳酸氢离子交換
- 細胞內外的離子交換,保持電中性。钠离子/氢离子交換用一個細胞外的質子交換細胞內的鈉離子,可調控細胞內的 pH 值、細胞體積及鈉離子的進出;目前已發現六種 isoform。氯离子/碳酸氢离子交換則是用一個細胞內的碳酸氢离子換一個細胞外的氯离子。
- 調節水分平衡
- 離子平衡之調節
- 協助氯離子再吸收
- 當鈉離子再吸收時,因為它帶有正電荷,故會吸引一個陰離子(通常為氯離子)一起通過細胞膜,因此氯離子之再吸收即與鈉離子之再吸收平行。
- 動作電位
- 鈉可由細胞膜的鈉離子通道進出細胞。在神經系統中,鈉及其他離子可造成動作電位 ,用於傳遞神經訊息。
低血鈉症
體液中鈉的濃度太低即為低血鈉症(Hyponatremia)。發生的原因可能是:攝取過多水份、腎臟功能損壞、肝硬化、心臟病、長期腹瀉、ADH分泌不正常等。當血液中的鈉濃度突降時,嚴重的症狀很快就出現。腦對鈉濃度很敏感,所以首先會無精打采及思考遲鈍。若情況更嚴重,接下來會肌肉抽搐、神志不清、昏迷甚至死亡。
輕微的低血鈉症可由控制飲食中的液體量(一天少於1L)而治療。嚴重的低血鈉症很危急,醫生可用藥物或靜脈注射緩慢增加血液中的鈉含量。若血液中的鈉濃度增加太快,會造成嚴重且通常為永久的腦部損傷。
高血鈉症
血液中鈉的濃度太高即為高血鈉症(Hypernatremia),主要由脫水引起。發生的原因可能有:攝取過少水分、腹瀉、嘔吐、發燒、過度出汗、尿崩症、腦下垂體受損、其他電解質失調、鐮型血球病、使用藥物等等。高血鈉症在老年人當中最普遍。高血鈉症最重要的症狀起因於腦部官能障礙,嚴重高血鈉症會導致混亂、肌肉痙攣、發作、昏迷、甚至死亡。
高血鈉症可由恢復供水治療。較嚴重的高血鈉症要經由靜脈給予稀釋液體(含水以及少量仔細調整濃度的鈉 )。血液中的鈉濃度必須非常緩慢的下降,否則會造成永久的腦部損害。
痛風
經常進食含高鈉食物也會引致痛風症。
參見
- 透明質酸鈉(Sodium hyaluronate)
註釋
- Endt, P. M. . Nuclear Physics A. 12/1990, 521: 1–400. Bibcode:1990NuPhA.521....1E. doi:10.1016/0375-9474(90)90598-G.
- 藝術與建築索引典—鈉 於2010年11月4日查閱
- Gropper SS, Groff JL, et al. (2005)Advanced Nutrition and Human Metabolism, 4th ed., pp. 402-404. Wardswirth, ISBN 978-0-534-55986-1
- . [2008-01-09]. (原始内容存档于2008-08-06).
- Institute of Medicine (2005) Dietary Reference Intakes for Water, Potassium, Sodium, Chloride, and Sulfate. pp. 269-423. National Academy Press, ISBN 978-0-309-53049-1
- Institute of Medicine (2005) Dietary Reference Intakes for Water, Potassium, Sodium, Chloride, and Sulfate. pp. 269-463. National Academy Press, ISBN 978-0-309-53049-1
外部連結
![]() |
維基教科書中的相關電子:钠及其重要化合物 |
- 元素钠在洛斯阿拉莫斯国家实验室的介紹(英文)
- —— {{LinkForElement|Na| }}(英文)
- 元素钠在The Periodic Table of Videos(諾丁漢大學)的介紹(英文)
- 元素钠在Peter van der Krogt elements site的介紹(英文)
- WebElements.com – {{LinkForElement|Na| }}(英文)
- Sodium at The Periodic Table of Videos (University of Nottingham)
- Etymology of "natrium" – source of symbol Na
- The Wooden Periodic Table Table's Entry on Sodium
- Sodium isotopes data from The Berkeley Laboratory Isotopes Project's