錀
錀(Roentgenium)是一種人工合成的放射性化學元素,化學符號是Rg,原子序是111。錀属于超铀元素、錒系後元素。錀的放射性極強,已知最穩定的錀同位素為錀-282,其半衰期约為2.1分鐘,之后衰變成为第109号元素䥑。第111号元素系过渡金属11族的成员,所以其化学性质预计和金、银、铜等11族金属类似,有可能會是銅紅色、銀白色或金黃色等有色彩的固體金属。
歷史

发现
錀是由德国达姆施塔特的重离子研究所(GSI)于1994年12月8日,在线性加速器内利用镍-64轰击铋-209而合成的。这次实验成功产生了三颗錀-272原子,其迅速衰变成其他元素。[5]
IUPAC/IUPAP聯合工作小組(JWP)在2001年時認為沒有足夠證據證明當時確實發現了錀。[6]GSI的小組在2002年重複實驗,並再檢測到三個原子。[7][8]在他們2003年的報告當中,聯合工作小組決定承認GSI團隊對此新元素的發現。[9]
命名
111號元素在2004年11月1日被命名为Roentgenium(Rg),纪念1895年发现X射线的科学家威廉·倫琴。根據IUPAC元素系統命名法,111號元素原称“Unununium”,源自111的拉丁語寫法。
2005年,全国科学技术名词审定委员会提出第111号元素中文定名草案。2006年1月20日下午由全国科学技术名词审定委员会、国家语言文字工作委员会组织召开的第111号元素中文定名研讨会上,确定使用类推简化字"𬬭"(读音同"伦"),对应繁体字“錀”字,是表示古代一种金属元素的古字。2007年03月21日全国科学技术名词审定委员会公布这一结果,同时也宣布该命名已经得到国家语言文字工作委员会的同意。[10][11]
同位素與核特性
能產生Z=111複核的目標、發射體組合
下表列出各種可用以產生111號元素的目標、發射體組合。
目標 | 發射體 | CN | 結果 |
---|---|---|---|
208Pb | 65Cu | 273Rg | 反應成功 |
209Bi | 64Ni | 273Rg | 反應成功 |
232Th | 45Sc | 277Rg | 尚未嘗試 |
231Pa | 48Ca | 279Rg | 尚未嘗試 |
238U | 41K | 280Rg | 尚未嘗試 |
237Np | 40Ar | 277Rg | 尚未嘗試 |
244Pu | 37Cl | 281Rg | 尚未嘗試 |
243Am | 36S | 279Rg | 尚未嘗試 |
248Cm | 31P | 279Rg | 尚未嘗試 |
250Cm | 31P | 281Rg | 尚未嘗試 |
249Bk | 30Si | 279Rg | 尚未嘗試 |
251Cf | 27Al | 278Rg | 尚未嘗試 |
209Bi(64Ni,xn)273−xRg (x=1)
位於俄羅斯杜布納的團隊在1986年使用這種冷核聚變反應進行了第一次合成錀的實驗。實驗並沒有產生可辨認為錀的原子核,截面限制在4 pb。其後GSI的團隊使用改進了的設施進行實驗,成功發現3顆272Rg原子;另於2000年再合成3顆原子。日本理化學研究所在2003年測定14個272Rg原子的衰變1n激發能,證實了錀的發現。[12]
作為衰變產物
科學家也曾在更重元素的衰變產物中觀察到錀的同位素。
蒸發殘留 | 觀測到的錀同位素 |
---|---|
294Ts | 282Rg[15] |
293Ts | 281Rg[15] |
288Mc | 280Rg[16] |
287Mc | 279Rg[16] |
282Nh | 278Rg[17] |
278Nh | 274Rg[17] |
同位素發現時序
同位素 | 發現年份 | 核反應 |
---|---|---|
272Rg | 1994年 | 209Bi(64Ni,n) |
273Rg | 未知 | |
274Rg | 2004年 | 209Bi(70Zn,n) [17] |
275Rg | 未知 | |
276Rg | 未知 | |
277Rg | 未知 | |
278Rg | 2006年 | 237Np(48Ca,3n) [17] |
279Rg | 2003年 | 243Am(48Ca,4n) [16] |
280Rg | 2003年 | 243Am(48Ca,3n) [16] |
281Rg | 2009年 | 249Bk(48Ca,4n) |
282Rg | 2009年 | 249Bk(48Ca,3n) |
272Rg
直接合成272Rg時,該同位素發射出4顆α粒子,其能量分別為11.37、11.03、10.82和10.40 MeV。GSI所測得的272Rg半衰期為1.6毫秒,同時從日本理化學研究所得到的數據顯示半衰期約3.8毫秒。衝突的數據可能是由於存在同核異構體,但目前的數據不足以作出任何結論。
同位素產量
下表列出直接合成錀的聚變核反應的截面和激發能量。粗體數據代表從激發函數算出的最大值。+代表觀測到的出口通道。
冷聚變
發射體 | 目標 | CN | 1n | 2n | 3n |
---|---|---|---|---|---|
64Ni | 209Bi | 273Rg | 3.5 pb, 12.5 MeV | ||
65Cu | 208Pb | 273Rg | 1.7 pb, 13.2 MeV |
化學屬性
電子結構(相對論)
穩定的11族元素銅、銀和金都有著nd10(n+1)s1形式的外層電子排布。這些元素的第一激發態原子的外層電子排布為nd9(n+1)s2。由於d軌域電子之間的自旋-軌道作用,這種狀態分為兩個不同的能階。銅基態和最低激發態之間的能量差使銅呈紅棕色。銀的能量差距更大,因此呈銀色。然而,隨著原子序的增加,相對論效應使激發態更加穩定,金的能量差減少,因此再次呈金黃色。有關錀的計算表明,6d97s2能階足夠穩定,應可成為基態,而6d107s1則會是第一激發態。該新的基態與第一激發態間的能量差和銀相似,因此錀預計將呈銀色。[18]
氧化態
錀預計將是6d系過渡金屬的第9個成員,屬於週期表中11族(IB)最重的成員,位於銅、銀和金的下面。每個11族元素的穩定氧化態都不同:銅形成穩定的+2態,銀則主要形成銀(I),金則主要形成金(III)。銅(I)和銀(II)比較少見。因此,錀預計主要形成穩定的+3態。由於相對論效應,金也形成-1穩定氧化態,錀可能也這樣做。
參考資料
- Turler, A. (PDF). Journal of Nuclear and Radiochemical Sciences. 2004, 5 (2): R19–R25. (原始内容 (PDF)存档于2011-06-11).
- Haire, Richard G. . Morss; Edelstein, Norman M.; Fuger, Jean (编). 3rd. Dordrecht, The Netherlands: Springer Science+Business Media. 2006. ISBN 1-4020-3555-1.
- Östlin, A.; Vitos, L. . Physical Review B. 2011, 84 (11). Bibcode:2011PhRvB..84k3104O. doi:10.1103/PhysRevB.84.113104.
- Chemical Data. Roentgenium - Rg, Royal Chemical Society
- Hofmann, S.; Ninov, V.; Heßberger, F. P.; Armbruster, P.; Folger, H.; Münzenberg, G.; Schött, H. J.; Popeko, A. G.; Yeremin, A. V. . Zeitschrift für Physik A. 1995, 350 (4): 281. Bibcode:1995ZPhyA.350..281H. doi:10.1007/BF01291182.
- Karol; Nakahara, H.; Petley, B. W.; Vogt, E.; 等. (PDF). Pure Appl. Chem. 2001, 73 (6): 959–967. doi:10.1351/pac200173060959.
- Hofmann, S.; Heßberger, F.P.; Ackermann, D.; Münzenberg, G.; Antalic, S.; Cagarda, P.; Kindler, B.; Kojouharova, J.; Leino, M. . The European Physical Journal A. 2002, 14 (2): 147. doi:10.1140/epja/i2001-10119-x.
- Hofmann; 等. (PDF). GSI report 2000. [2008-03-02]. (原始内容 (PDF)存档于2008-02-27).
- Karol, P.J.; Nakahara, H.; Petley, B.W.; Vogt, E. (PDF). Pure Appl. Chem. 2003, 75 (10): 1601–1611. doi:10.1351/pac200375101601.
- 全国科技名词委; 才磊. . 中国科技术语. 2006-03-25, 8 (01): 18 [2020-11-06].
- 邹声文. . 新华网. [2020-11-06].
- Morita, K; Morimoto, K; Kaji, D; Goto, S; Haba, H; Ideguchi, E; Kanungo, R; Katori, K; Koura, H. . Nuclear Physics A. 2004, 734: 101. doi:10.1016/j.nuclphysa.2004.01.019.
- Folden, C. M. . Physical Review Letters. 2004, 93 (21): 212702. Bibcode:2004PhRvL..93u2702F. PMID 15601003. doi:10.1103/PhysRevLett.93.212702.
- "Development of an Odd-Z-Projectile Reaction for Heavy Element Synthesis: 208Pb(64Ni,n)271Ds and 208Pb(65Cu,n)272111", Folden et al., LBNL repositories. Retrieved on 2008-03-02
- 詳見Ts
- 詳見鏌
- 詳見鉨
- Turler, A. (PDF). Journal of Nuclear and Radiochemical Sciences. 2004, 5 (2): R19–R25. (原始内容 (PDF)存档于2011-06-11).
外部連結
- 元素錀在洛斯阿拉莫斯国家实验室的介紹(英文)
- —— {{LinkForElement|錀| }}(英文)
- 元素錀在The Periodic Table of Videos(諾丁漢大學)的介紹(英文)
- 元素錀在Peter van der Krogt elements site的介紹(英文)
- WebElements.com – {{LinkForElement|錀| }}(英文)